7.已知a,b,c分別是△ABC內角A,B,C的對邊,且$\sqrt{3}$csinA=acosC.
(Ⅰ)求C的值;
(Ⅱ)若c=$\sqrt{7}$a,b=2$\sqrt{3}$,求△ABC的面積.

分析 (I)由已知和正弦定理可得$\sqrt{3}$sinCsinA=sinAcosC,約掉sinA由同角三角函數(shù)基本關系可得;
(II)由已知數(shù)據(jù)和余弦定理得a的方程,解方程代入三角形的面積公式可得.

解答 解:(I)∵△ABC中$\sqrt{3}$csinA=acosC,
∴由正弦定理可得$\sqrt{3}$sinCsinA=sinAcosC,
約掉sinA可得$\sqrt{3}$sinC=cosC,
∴tanC=$\frac{sinC}{cosC}$=$\frac{\sqrt{3}}{3}$,
由C為三角形內角可得C=$\frac{π}{6}$;
(II)∵c=$\sqrt{7}$a,b=2$\sqrt{3}$,
∴由余弦定理得7a2=a2+12-4$\sqrt{3}$a×$\frac{\sqrt{3}}{2}$,
整理可得a2+a-2=0,解得a=1或a=-2(舍去),
∴△ABC的面積S=$\frac{1}{2}×1×2\sqrt{3}×\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.

點評 本題考查正余弦定理解三角形,涉及三角形的面積公式,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.身高都不相等的10人排成人數(shù)相等的兩列,每列從前到后按高矮次序排列,則共有不同的排隊方法種數(shù)252種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.使(x2+$\frac{1}{2{x}^{3}}$)n(n∈N)展開式中含有常數(shù)項的n的最小值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≤0}\\{x+y-3≥0}\\{x+2y≤m}\end{array}\right.$,且z=x-y的最小值為-3,則x2+y2的最小值是5,實數(shù)m的值為6.•

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,則$\sqrt{2}$cos(α+$\frac{π}{4}$)等于(  )
A.$\frac{7}{5}$B.$\frac{1}{5}$C.-$\frac{7}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.${27^{-\frac{1}{3}}}-{log_8}2$的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.方程|x2-a|-x+2=0(a>0)有兩個不等的實數(shù)根,則實數(shù)a的取值范圍是a>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\frac{4^x}{{{4^x}+1}}$,則f(-2016)+f(-2015)+…+f(-1)+f(0)+f(1)+f(2)+…+f(2015)+f(2016)=( 。
A.2016B.2017C.$\frac{4033}{2}$D.4033

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設x,y滿足約束條件$\left\{\begin{array}{l}x≤-2\\ 3x+y≤-1\\ y≥-x+1\end{array}\right.$,則目標函數(shù)z=-x+2y的最小值是8.

查看答案和解析>>

同步練習冊答案