【題目】劉徽是我國古代偉大的數(shù)學家,他的杰作《九章算術注》和《海島算經(jīng)》是我國最寶貴的數(shù)學遺產(chǎn)劉徽是世界上最早提出十進小數(shù)概念的人,他正確地提出了正負數(shù)的概念及其加減運算的規(guī)則.提出了“割圓術”,并用“割圓術”求出圓周率π為3.14.劉徽在割圓術中提出的“割之彌細,所失彌少,割之又割以至于不可割,則與圓合體而無所失矣”被視為中國古代極限觀念的佳作.其中“割圓術”的第一步是求圓的內接正六邊形的面積,第二步是求圓的內接正十二邊形的面積,依此類推.若在圓內隨機取一點,則該點取自該圓內接正十二邊形的概率為( 。
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求函數(shù)的零點和極值;
(3)若對任意,都有成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(多選題)下列說法正確的是( )
A.在回歸直線方程中,當解釋變量每增加1個單位時,預報變量平均減少2.3個單位
B.兩個具有線性相關關系的變量,當相關指數(shù)的值越接近于0,則這兩個變量的相關性就越強
C.若兩個變量的相關指數(shù),則說明預報變量的差異有88%是由解釋變量引起的
D.在回歸直線方程中,相對于樣本點的殘差為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F1為橢圓的左焦點,在橢圓上,PF1⊥x軸.
(1)求橢圓的方程:
(2)已知直線l與橢圓交于A,B兩點,且坐標原點O到直線l的距離為的大小是否為定值?若是,求出該定值:若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為,且曲線在x=0處的切線與直線平行(其中e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a,b的值;
(2)如果,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位年會進行抽獎活動,在抽獎箱里裝有張印有“一等獎”的卡片, 張印
有“二等獎”的卡片, 3張印有“新年快樂”的卡片,抽中“一等獎”獲獎元, 抽中“二等獎”獲獎元,抽中“新年快樂”無獎金.
(1)單位員工小張參加抽獎活動,每次隨機抽取一張卡片,抽取后不放回.假如小張一定要將所有獲獎卡片全部抽完才停止. 記表示“小張恰好抽獎次停止活動”,求的值;
(2)若單位員工小王參加抽獎活動,一次隨機抽取張卡片.
①記表示“小王參加抽獎活動中獎”,求的值;
②設表示“小王參加抽獎活動所獲獎金數(shù)(單位:元)”,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.
(1)求的值及該圓的方程;
(2)設為上任意一點,過點作的切線,切點為,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com