化簡(jiǎn)或求值:sin(x-y) siny-cos(x-y)cosy=
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)兩角和差的余弦公式進(jìn)行化簡(jiǎn)即可.
解答: 解:sin(x-y) siny-cos(x-y)cosy=-[cos(x-y)cosy-sin(x-y) siny]=-cos(x-y+y)=-cosx,
故答案為:-cosx
點(diǎn)評(píng):本題主要考查兩角和差的余弦公式的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知π<α<2π,cos(α-9π)=-
3
5
,求:tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x+1
的值域?yàn)?div id="ekqauuo" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

Sn為數(shù)列bn的前n項(xiàng)和,且滿足b1=1,
2bn
bnSn
-S
2
n
=1(n≥2).證明數(shù)列{
1
Sn
}成等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公共汽車站每隔15分鐘有一輛汽車到達(dá),在出發(fā)前在車站?3分鐘乘客到達(dá)車站的時(shí)刻是任意的.
(1)求乘客到站候車時(shí)間 大于10分鐘的概率;
(2)候車時(shí)間不超過(guò)10分鐘的概;
(3)乘客到達(dá)立刻上車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面A1B1C1,A1B1=A1C1,點(diǎn)D、F分別是棱BC、CC1上的中點(diǎn),點(diǎn)E是CC1上的動(dòng)點(diǎn)
(Ⅰ)證明:A1F∥平面ADE;
(Ⅱ)證明:A1F⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
1
4
,α為第二象限角,求
(1)cosα,tanα的值
(2)sin(α+
π
4
),tan(α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試比較a3+8a與5a2+4的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F⊆G.若對(duì)任意的x∈F,都有f(x)=g(x),則稱g(x)為f(x)在G上的一個(gè)“延拓函數(shù)”.已知f(x)=ex(x≥0)(e為自然對(duì)數(shù)的底數(shù)),若g(x)為f(x)在R上的一個(gè)延拓函數(shù),則下列可作為g(x)的解析式的個(gè)數(shù)為( 。
①y=ln|x|;②y=e|x|;③y=-ln|x|;④y=
3x2-2,x<0
ex,x≥0
;⑤y=-x2+1;⑥y=(
1
10
|x|
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案