分析 先將有理數(shù)m=2x2-6xy+5y2變形為(x-2y)2+(x-y)2,可知“世博數(shù)”m=p2+q2(其中p、q是任意有理數(shù)).兩個(gè)“世博數(shù)”a、b,不妨設(shè)a=j2+k2,b=r2+s2,其中j、k、r、s為任意給定的有理數(shù).
(1)a、b之積為=(jr+ks)2+(js-kr)2是“世博數(shù)”;
(2)a、b(b≠0)之商=${(\frac{jr+ks}{{{r^2}+{s^2}}})^2}+{(\frac{js-kr}{{{r^2}+{s^2}}})^2}$也是“世博數(shù)”.
解答 (1)解:∵m=2x2-6xy+5y2=(x-2y)2+(x-y)2,其中x、y是有理數(shù),
∴“世博數(shù)”m=p2+q2(其中p、q是任意有理數(shù)),只須p=x-2y,q=x-y即可. (3分)
∴對于任意的兩個(gè)兩個(gè)“世博數(shù)”a、b,不妨設(shè)a=j2+k2,b=r2+s2,
其中j、k、r、s為任意給定的有理數(shù),(3分)
則ab=(j2+k2)(r2+s2)=(jr+ks)2+(js-kr)2是“世博數(shù)”;(3分)
(2)證明:$\frac{a}=\frac{{{j^2}+{k^2}}}{{{r^2}+{s^2}}}=\frac{{({j^2}+{k^2})({r^2}+{s^2})}}{{{{({r^2}+{s^2})}^2}}}(3分)=\frac{{{{(jr+ks)}^2}+{{(js-kr)}^2}}}{{{{({r^2}+{s^2})}^2}}}$
=${(\frac{jr+ks}{{{r^2}+{s^2}}})^2}+{(\frac{js-kr}{{{r^2}+{s^2}}})^2}$也是“世博數(shù)”. (3分)
點(diǎn)評 本題考查了因式分解的應(yīng)用,掌握“世博數(shù)”的概念是解題的關(guān)鍵,注意“世博數(shù)”m=p2+q2(其中p、q是任意有理數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
第1 題 | 第2題 | 第3 題 | 第4 題 | 第5 題 | 第6 題 | 第7題 | 第8 題 | 得分 | |
甲 | × | × | √ | × | × | √ | × | √ | 5 |
乙 | × | √ | × | × | √ | × | √ | × | 5 |
丙 | √ | × | √ | √ | √ | × | × | × | 6 |
丁 | √ | × | × | × | √ | × | × | × | ? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,$\frac{1}{2}$) | B. | (-∞,-3)∪($\frac{1}{2}$,+∞) | C. | (-2,$\frac{1}{3}$) | D. | (-∞,-2)∪($\frac{1}{3}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com