A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
分析 設(shè)點,代入雙曲線方程,利用點差法,結(jié)合線段AB的中點為M以及k1k2=-$\frac{2}{3}$,求得橢圓的離心率$\frac{c}{a}$的值.
解答 解:設(shè)A(x1,y1),B(x2,y2),M(x,y),
則x1+x2=2x,y1+y2=2y,且 $\frac{{{x}_{1}}^{2}}{{a}^{2}}$+$\frac{{{y}_{1}}^{2}}{^{2}}$=1,$\frac{{{x}_{2}}^{2}}{{a}^{2}}$+$\frac{{{y}_{2}}^{2}}{^{2}}$=1,兩式相減可得:$\frac{2x{(x}_{1}{-x}_{2})}{{a}^{2}}$+$\frac{2y{(y}_{1}{-y}_{2})}{^{2}}$=0.
∵直線l的斜率為$\frac{{y}_{1}{-y}_{2}}{{x}_{1}{-x}_{2}}$=k1(k1≠0),直線OM的斜率為k2=$\frac{y}{x}$,
∴k1•k2=$\frac{y}{x}$•$\frac{{y}_{1}{-y}_{2}}{{x}_{1}{-x}_{2}}$=-$\frac{^{2}}{{a}^{2}}$=-$\frac{2}{3}$,
∴$\frac{^{2}}{{a}^{2}}$=$\frac{2}{3}$=$\frac{{a}^{2}{-c}^{2}}{{a}^{2}}$,
∴$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,
故選:C.
點評 本題考查雙曲線方程的性質(zhì)和應(yīng)用,考查點差法的運用,考查學(xué)生的計算能力,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | [-2,$\frac{1}{4}$] | C. | [-1,1] | D. | [-2,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{6}$,$\frac{1}{6}$) | B. | ($\frac{1}{2}$,$\frac{1}{6}$) | C. | ($\frac{1}{2}$,$\frac{1}{4}$) | D. | ($\frac{1}{2}$,$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (1,0) | C. | (1,-3) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | $\frac{2\sqrt{2}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com