【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過(guò)點(diǎn)(圖2).有下列四個(gè)命題:
A.正四棱錐的高等于正四棱柱高的一半 |
B.將容器側(cè)面水平放置時(shí),水面也恰好過(guò)點(diǎn) |
C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn) |
D.若往容器內(nèi)再注入升水,則容器恰好能裝滿 |
其中真命題的代號(hào)是: (寫出所有真命題的代號(hào)).
【答案】BD
【解析】
設(shè)圖(1)水的高度h2幾何體的高為h1
圖(2)中水的體積為b2h1-b2h2=b2(h1-h2),
所以b2h2=b2(h1-h2),所以h1=h2,故A錯(cuò)誤,D正確.
對(duì)于B,當(dāng)容器側(cè)面水平放置時(shí),P點(diǎn)在長(zhǎng)方體中截面上,
又水占容器內(nèi)空間的一半,所以水面也恰好經(jīng)過(guò)P點(diǎn),故B正確.
對(duì)于C,假設(shè)C正確,當(dāng)水面與正四棱錐的一個(gè)側(cè)面重合時(shí),
經(jīng)計(jì)算得水的體積為b2h2>b2h2,矛盾,故C不正確.故選BD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買人數(shù)(單位:萬(wàn)人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】惠州市某學(xué)校需要從甲、乙兩名學(xué)生中選1人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人5次數(shù)學(xué)考試的分?jǐn)?shù),統(tǒng)計(jì)結(jié)果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲 | 80 | 85 | 71 | 92 | 87 |
乙 | 90 | 76 | 75 | 92 | 82 |
(1)若從甲、乙兩人中選出1人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰(shuí)合適?請(qǐng)說(shuō)明理由.
(2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中答題方案如下:
每人從5道備選題中隨機(jī)抽取3道作答,若至少答對(duì)其中2道,則可參加復(fù)賽,否則被淘汰.假設(shè)被選中參賽的學(xué)生只會(huì)5道備選題中的3道,求該學(xué)生能進(jìn)人復(fù)賽的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
Ⅰ寫出的普通方程和的直角坐標(biāo)方程;
Ⅱ若與相交于A,B兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題中正確的是( )
A.空間的任何一個(gè)向量都可用其他三個(gè)向量表示
B.若為空間向量的一組基底,則構(gòu)成空間向量的另一組基底
C.為直角三角形的充要條件是
D.任何三個(gè)不共線的向量都可構(gòu)成空間向量的一個(gè)基底
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下5條表述中,橫線上填A代表“充分非必要條件”,填B代表“必要非充分條件”,填C代表“充要條件”,填D代表“既非充分也非必要條件”,請(qǐng)將相應(yīng)的字母填入下列橫線上.
(1)若,則“是與的等比中項(xiàng)”是“”的_______.
(2)“數(shù)列為常數(shù)列”是“數(shù)列既是等差數(shù)列又是等比數(shù)列”的_______.
(3)若是等比數(shù)列,則“”是“為遞減數(shù)列”的_______.
(4)若是公比為的等比數(shù)列,則“”是“是遞減數(shù)列”的_______.
(5)記數(shù)列的前項(xiàng)和為,則“數(shù)列為遞增數(shù)列”是“數(shù)列的各項(xiàng)均為大于零”的_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù).在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com