(本小題滿(mǎn)分13分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且·="0," ||=||.(點(diǎn)C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線(xiàn)和橢圓交于M,N兩個(gè)不同點(diǎn),求面積的最大值,并求此時(shí)直線(xiàn)的方程.
(I);(II),
解析試題分析:(I)設(shè)橢圓的標(biāo)準(zhǔn)方程為
又∵C在橢圓上,
∴橢圓的標(biāo)準(zhǔn)方程為 …………5分
(II)設(shè)
∵CO的斜率為-1,
∴設(shè)直線(xiàn)的方程為
代入劉
又C到直線(xiàn)的距離
的面積
當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)滿(mǎn)足題中條件,
∴直線(xiàn)的方程為 …………13分
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì);橢圓的標(biāo)準(zhǔn)方程;直線(xiàn)與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):本題考查橢圓方程的求法和弦長(zhǎng)的運(yùn)算,解題時(shí)要注意橢圓性質(zhì)的靈活運(yùn)用和弦長(zhǎng)公式的合理運(yùn)用。在求直線(xiàn)與圓錐曲線(xiàn)相交的弦長(zhǎng)時(shí)一般采用韋達(dá)定理設(shè)而不求的方法,在求解過(guò)程中一般采取步驟為:設(shè)點(diǎn)→聯(lián)立方程→消元→韋達(dá)定理→弦長(zhǎng)公式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知拋物線(xiàn)C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線(xiàn)y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線(xiàn)C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
已知點(diǎn),參數(shù),點(diǎn)Q在曲線(xiàn)C:上.
(1)求在直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線(xiàn)C的方程;
(2)求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線(xiàn)在軸上的截距為,交橢圓于A、B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線(xiàn)MA、MB與軸始終圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿(mǎn)足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線(xiàn)l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P、Q的直線(xiàn)對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知橢圓的離心率為,為橢圓的右焦點(diǎn),兩點(diǎn)在橢圓上,且,定點(diǎn)。
(1)若時(shí),有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當(dāng)動(dòng)直線(xiàn)斜率為k,且設(shè)時(shí),試求關(guān)于S的函數(shù)表達(dá)式f(s)的最大值,以及此時(shí)兩點(diǎn)所在的直線(xiàn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)及點(diǎn),直線(xiàn)的斜率為1且不過(guò)點(diǎn)P,與拋物線(xiàn)交于A,B兩點(diǎn)。
(1) 求直線(xiàn)在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線(xiàn)交于另一點(diǎn)C,D,證明:AD、BC交于定點(diǎn)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com