設(shè)集合M={x|0≤x≤2},集合N={x|x2-x-2<0},則M∩N=( 。
A、{x|0<x<2}
B、{x|0≤x<2}
C、{x|0≤x≤2}
D、{x0<x≤2}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集定義和不等式性質(zhì)求解.
解答: 解:∵集合M={x|0≤x≤2},集合N={x|x2-x-2<0}={x|-1<x<2},
∴M∩N={x|0≤x<2}.
故選:B.
點(diǎn)評(píng):本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的
x2
9
-
y2
b2
=1的右焦點(diǎn)坐標(biāo)為(
13
,0),則該雙曲線的漸近線方程為( 。
A、y=±
2
3
x
B、y=±
3
2
x
C、y=±
4
9
x
D、y=±
9
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,側(cè)棱AA1⊥平面ABC,O、D、E分別是棱AB、A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)求證:平面OCC1D⊥平面ABB1A1
(Ⅲ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在直線3x+4y=0上,求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-3,則首項(xiàng)a1=
 
,當(dāng)n≥2時(shí),an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,E,F(xiàn)分別為BB1,AC的中點(diǎn).
(Ⅰ)求證:BF∥平面A1EC;
(Ⅱ)若AB=AA1,求二面角C-A1E-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項(xiàng)工程的橫道圖如下.

(1)求完成這項(xiàng)工程的最短工期;
(2)畫出該工程的網(wǎng)絡(luò)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:程序輸出的結(jié)果S=132,則判斷框中應(yīng)填( 。
A、i≥10?
B、i≤10?
C、i≥11?
D、i≥12?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=(n+1)(
9
10
n(n∈N+),試問:該數(shù)列{an}有沒有最大項(xiàng)?若有,求最大項(xiàng)的項(xiàng)數(shù);若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案