f(x)=
3x2
1-2x
+lg(2x+1)的定義域是( 。
A、(-
1
2
,+∞)
B、(-
1
2
,1)
C、(-
1
2
,
1
2
D、(-∞,-
1
2
考點(diǎn):函數(shù)的定義域及其求法,對(duì)數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.
解答: 解:∵函數(shù)f(x)=
3x2
1-2x
+lg(2x+1),
1-2x>0
2x+1>0
,
解得-
1
2
<x<
1
2
;
∴函數(shù)的定義域是(-
1
2
,
1
2
).
故選:C.
點(diǎn)評(píng):本題考查了求函數(shù)定義域的問題,解題時(shí)應(yīng)根據(jù)函數(shù)的解析式進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,該幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x+
4
x
在(0,2]上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=2,BC=1,cosC=
1
2
,則△ABC的面積為(  )
A、
3
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足a2015=2a2013+a2014,若存在兩項(xiàng)am、an使得
aman
=4a1,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某家具生產(chǎn)廠需要在一個(gè)半徑為1的圓形木料中依照?qǐng)D紙方式切割出如圖十字圖形,其中∠AEF=θ(θ為變量),AB=HG=x,AF=y.
(1)用θ表示x,y,并求出θ的取值范圍.
(2)將陰影部分的面積S表示為θ的函數(shù),并求出S的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意的正數(shù)s,t,有下列4個(gè)關(guān)系式:
①f(s+t)=f(s)+f(t);
②f(s+t)=f(s)f(t);
③f(st)=f(s)+f(t);
④f(st)=f(s)f(t).
則下列函數(shù)中,不滿足任何一個(gè)關(guān)系式的是( 。
A、y=kx+b(kb≠0)
B、y=x2
C、y=ax(a>0,且a≠1)
D、y=logax(a>0,且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=5,b=4,A=60°,則此三角形有(  )
A、一解B、兩解
C、無解D、解的個(gè)數(shù)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
+
3-x
的定義域是
 
.(用區(qū)間表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案