6.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為150°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}|=2$則$|{\overrightarrow a+\sqrt{3}\overrightarrow b}|$=2.

分析 利用兩個向量的數(shù)量積的定義求得$\overrightarrow{a}•\overrightarrow$ 的值,從而求得$|{\overrightarrow a+\sqrt{3}\overrightarrow b}|$=$\sqrt{{(\overrightarrow{a}+\sqrt{3}\overrightarrow)}^{2}}$ 的值.

解答 解:∵向量$\overrightarrow a$與$\overrightarrow b$的夾角為150°,$\overrightarrow a=(2,0)$,∴|$\overrightarrow{a}$|=2,
又$|{\overrightarrow b}|=2$,∴$\overrightarrow{a}•\overrightarrow$=2•2•cos150°=-2$\sqrt{3}$,
則$|{\overrightarrow a+\sqrt{3}\overrightarrow b}|$=$\sqrt{{(\overrightarrow{a}+\sqrt{3}\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\sqrt{3}\overrightarrow{a}•\overrightarrow+{3\overrightarrow}^{2}}$=$\sqrt{4-12+3×4}$=2,
故答案為:2.

點評 本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.平行于直線l:2x-y=0且與圓x2+y2=5相切的直線的方程是( 。
A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{{4sinA-\sqrt{7}cosC}}{c}=\frac{{\sqrt{7}cosB}}$.
(1)求sinB的值;
(2)若a,b,c成等差數(shù)列,且公差大于0,求cosA-cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知D是△ABC邊BC上一點.
(1)若B=45°,且AB=DC=7,求△ADC的面積;
(2)當(dāng)∠BAC=90°時,若BD:DC:AC=2:1:$\sqrt{3}$,且AD=2$\sqrt{2}$,求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若a2=b2+c2-bc,a=3,則△ABC的面積的最大值為(  )
A.$2\sqrt{3}$B.9C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,平面PAD⊥平面ABCD,ABCD是邊長為2的菱形,PA=PD,且∠APD=90°,∠DAB=60°.
(I)若線段PC上存在一點M,使得直線PA∥平面MBD,試確定M點的位置,并給出證明;
(II)在第(I)問的條件下,求三棱錐C-DMB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值
(2)化簡:$\frac{sin(\frac{π}{2}+α)cos(\frac{5π}{2}-α)tan(-π+α)}{tan(7π-α)sin(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=(m2-1)xm是冪函數(shù),且在(0,+∞)上是增函數(shù),則實數(shù)m的值為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案