18.如果A={x>-1},那么( 。
A.0⊆AB.{0}?AC.∅?AD.{0}⊆A

分析 根據(jù)元素與集合之間應(yīng)用∈或∉連接,我們可以判斷A的真假;根據(jù)集合與集合之間應(yīng)用包含符號連接,我們可以判斷B,C,D之間的真假,進(jìn)而得到答案.

解答 解:A={x|x>-1},由元素與集合的關(guān)系,集合與集合關(guān)系可知:{0}⊆A.
故選:D.

點評 本題的考查的知識點是集合的包含關(guān)系的判斷及應(yīng)用,元素與集合之間的關(guān)系,其中熟練掌握元素與集合之間的關(guān)系及集合與集合之間的關(guān)系,是解答此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}x-2,\;x≥0\\{2^x},\;x<0\end{array}$,則f(-1)=( 。
A.-1B.$\frac{1}{2}$C.2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)(1+i)z-2=i,則復(fù)數(shù)z在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知p:2x2-3x+1≤0,q:x2-(2a+1)x+a2≤0.
(1)若a=2且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)f(x)的解析式.
(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{x+2}$+$\frac{1}{|x|-1}$.
(1)求函數(shù)的定義域;     
(2)求f(0),f[f(2)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設(shè)∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的最大值為(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.集合A={x|x2+2x-3=0},集合B={x|ax=3},若A∩B=B,則實數(shù)a的值組成的集合為{0,-1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,cn=an+2an+1-an+1an,(n∈N*).
(1)證明數(shù)列{cn}是等差數(shù)列;
(2)如果a1+a3+…+a23=120,a2+a4+…+a24=132-12k,(k為常數(shù)),求數(shù)列{cn}的通項公式;
(3)在(2)的條件下,若數(shù)列{cn}的前n項和為Sn,問是否存在這樣的實數(shù)k,使Sn當(dāng)且僅當(dāng)n=12時取得最小值,若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案