【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

收入x (萬元)

8.2

8.6

10.0

11.3

11.9

支出y (萬元)

6.2

7.5

8.0

8.5

9.8

據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計,該社區(qū)一戶收入為15萬元家庭年支出為(
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元

【答案】B
【解析】解:由題意可得 = (8.2+8.6+10.0+11.3+11.9)=10,
= (6.2+7.5+8.0+8.5+9.8)=8,
代入回歸方程可得 ═8﹣0.76×10=0.4,
∴回歸方程為 =0.76x+0.4,
把x=15代入方程可得y=0.76×15+0.4=11.8,
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校一名籃球運動員在五場比賽中所得分?jǐn)?shù)的莖葉圖,則該運動員在這五場比賽中得分的方差為
(注:方差 ,其中 為x1 , x2 , …,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x0 , x0+ 是函數(shù)f(x)=cos2(wx﹣ )﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求 的值;
(2)若對 ,都有|f(x)﹣m|≤1,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試?yán)塾嫷梅,如?/span>的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨立。

(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;

(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C是橢圓M:上的三點,其中點A是橢圓的右頂點,BC過橢圓M的中心,且滿足ACBC,BC=2AC。

(1)求橢圓的離心率;

(2)若y軸被ABC的外接圓所截得弦長為9,求橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對周末家庭作業(yè)量的態(tài)度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機抽取一個容量為200的樣本進行調(diào)查,已知從700名高一、高二學(xué)生中共抽取了140名學(xué)生,那么該校有高三學(xué)生名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知拋物線的焦點為, 上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時, 為正三角形.

)求的方程;

)若直線,且有且只有一個公共點,

)證明直線過定點,并求出定點坐標(biāo);

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若滿足,且在定義域內(nèi)恒成立,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的最小值;

(Ⅲ)當(dāng)時,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組共有A、B、C、D、E五位同學(xué),他們的身高(單位:米)以及體重指標(biāo)(單位:千克/米2)如表所示:

A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

體重指標(biāo)

19.2

25.1

18.5

23.3

20.9


(1)從該小組身高低于1.80的同學(xué)中任選2人,求選到的2人身高都在1.78以下的概率
(2)從該小組同學(xué)中任選2人,求選到的2人的身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)中的概率.

查看答案和解析>>

同步練習(xí)冊答案