3.如圖,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求證:平面ACC1A1⊥平面A1BD;
(2)AB=AA1=2,求三棱錐B1-A1BD的體積.

分析 (1)由△ABD為等邊三角形可得AB=AD,故△ABC≌△ADC,得出AC平分∠BAD,故AC⊥BD,由A1A⊥平面ABCD得A1A⊥BD,故BD⊥平面ACC1A1,于是平面ACC1A1⊥平面A1BD;
(2)取AB的中點(diǎn)M,連結(jié)DM,則可證DM⊥平面ABB1A1,故而V${\;}_{{B}_{1}-{A}_{1}BD}$=V${\;}_{D-{A}_{1}{B}_{1}B}$=$\frac{1}{3}{S}_{△{A}_{1}{B}_{1}B}•DM$.

解答 證明:(1)∵AB=BD,∠BAD=60°,
∴△ABD是等邊三角形
∴AB=AD,又BC=CD,AC為公共邊,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,即AC為∠BAD的平分線,
∴AC⊥BD.
∵A1A⊥平面ABCD,BD?平面ABCD,
∴A1A⊥BD,又A1A?平面ACC1A1,AC?平面ACC1A1,A1A∩AC=A,
∴BD⊥平面ACC1A1,∵BD?平面A1BD,
∴平面ACC1A1⊥平面A1BD.
(2)取AB的中點(diǎn)M,連結(jié)DM,
∵△ABD是等邊三角形,AB=2,∴DM⊥AB,DM=$\sqrt{3}$.
∵A1A⊥平面ABCD,DM?平面ABCD,
∴A1A⊥DM,又A1A?平面ABB1A1,AB?平面ABB1A1,A1A∩AB=A,
∴DM⊥平面ABB1A1
∴V${\;}_{{B}_{1}-{A}_{1}BD}$=V${\;}_{D-{A}_{1}{B}_{1}B}$=$\frac{1}{3}{S}_{△{A}_{1}{B}_{1}B}•DM$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{3}=\frac{2\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了線面垂直,面面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}=0$,則雙曲線C的離心率為$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線$\frac{{x}^{2}}{3}$-y2=1的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為2c,直線y=$\sqrt{3}$(x+c)與雙曲線的一個(gè)交點(diǎn)M滿足∠MF1F2=2∠MF2F1,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),雙曲線兩漸近線分別為l1,l2,過點(diǎn)F作直線l1的垂線,分別交l1,l2于A,B兩點(diǎn),若A,B兩點(diǎn)均在x軸上方且|OA|=3,|OB|=5,則雙曲線的離心率e為( 。
A.$\frac{\sqrt{5}}{2}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}({n∈{N^*}})$.
(1)求證:$\left\{{\frac{1}{a_n}+\frac{1}{2}}\right\}$為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(3n-2)•$\frac{n}{2^n}•{a_n}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)n•λ<Tn+$\frac{n}{{{2^{n-1}}}}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)對(duì)任意實(shí)數(shù)x>y>0,若不等式x+2$\sqrt{xy}$>ay恒成立,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,0)B.(-∞,0]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“p∨q為真”是“¬p為假”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個(gè)焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O為坐標(biāo)原點(diǎn)),且|PF1|=$\sqrt{2}$|PF2|,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}+2}{2}$B.$\sqrt{3}$+2C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案