設(shè)函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在區(qū)間(-∞,0)是減函數(shù),且圖象過點(1,0),則不等式(x-1)f(x)≤0的解集為( )
A.(-∞,0)∪[2,+∞)
B.(-2,0)∪[2,+∞)
C.(-∞,0]∪(1,2]
D.(-∞,0)∪(1,2)
【答案】分析:根據(jù)不等式(x-1)f(x)≤0,由積商符號法則,得到f(x)≥0,或f(x)≤0,根據(jù)函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在區(qū)間(-∞,0)是減函數(shù),得到函數(shù)f(x)的對稱性和單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式f(x)≥0,或f(x)≤0.
解答:解:∵函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),
∴函數(shù)f(x)的圖象關(guān)于直線x=1對稱,
又∵函數(shù)y=f(x+1)在區(qū)間(-∞,0)是減函數(shù),
∴函數(shù)f(x)在區(qū)間(-∞,1)是減函數(shù),在區(qū)間(1,+∞)是增函數(shù),
又f(2)=0
∴f(0)=0
∴當(dāng)x>1時,f(x)≤0=f(2)
∴1<x≤2
當(dāng)x<1時,f(x)≥0=f(0)
∴x≤0,∴x≤0.
綜上x≤0或1<x≤2.
故選C.
點評:考查函數(shù)的單調(diào)性和奇偶性,以及函數(shù)圖象的平移和根據(jù)函數(shù)的單調(diào)性把函數(shù)值不等式轉(zhuǎn)化為自變量不等式,體現(xiàn)了轉(zhuǎn)化、運動變化和分類討論的思想方法,屬中檔題.