已知圓C:內有一點P(2,2),過點P作直線交圓C于A、B兩點。
(1)當經過圓心C時,求直線的方程;
(2)當弦AB的長為時,寫出直線的方程。

(1)(2)

解析試題分析:(1)圓心坐標為(1,0),,,整理得。 
(2)圓的半徑為3,當直線l的斜率存在時,設直線l的方程為,整理得
,圓心到直線l的距離為
,
解得,代入整理得。                       
當直線l的斜率不存在時,直線l的方程為,經檢驗符合題意。
直線l的方程為。
考點:直線方程及直線與圓的位置關系
點評:當直線與圓相交時,圓的半徑,圓心到直線的距離以及弦長的一半構成直角三角形,此直角三角形的求解計算是經常用到的

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

求與圓外切于點,且半徑為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過點的圓C與直線相切于點.
(1)求圓C的方程;
(2)已知點的坐標為,設分別是直線和圓上的動點,求的最小值.
(3)在圓C上是否存在兩點關于直線對稱,且以為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是圓上的動點,
(1)求的取值范圍;
(2)若恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:內有一點P(2,2),過點P作直線交圓C于A、B兩點。
(1)當經過圓心C時,求直線的方程;
(2)當弦AB的長為時,寫出直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知,圓C:,直線.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖:、是單位圓上的點,是圓與軸正半軸的交點,三角形為正三角形,       且AB∥軸.

(1)求的三個三角函數(shù)值;
(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

自點發(fā)出的光線射到軸上,被軸反射,其反射光線所在直線與圓相切,求光線所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設平面直角坐標系中,設二次函數(shù)的圖象與兩坐標軸有三個交點,經過這三個交點的圓記為C.求:
(Ⅰ)求實數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

同步練習冊答案