分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,得到函數(shù)的極小值小于0,從而判斷出函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)求出b1-2a,作差lna-(-2b)=lna+2-4a,根據(jù)函數(shù)的單調(diào)性求出g(a)的最大值,從而判斷出lna和-2b的大小即可.
解答 解:(Ⅰ)∵a=8,b=-6,
${f^'}(x)=\frac{(2x-1)(8x+1)}{x}(x>0)$
當(dāng)$0<x<\frac{1}{2}$時(shí),f′(x)<0,
當(dāng)$x>\frac{1}{2}$時(shí),f′(x)>0,
故f(x)在(0,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,+∞)遞增,
故f(x)的極小值是f($\frac{1}{2}$),
又∵$f(\frac{1}{2})=-1+ln2<0$,
∴f(x)有兩個(gè)零點(diǎn);
(Ⅱ) 依題有f′(1)=0,
∴2a+b=1即b=1-2a,
∴l(xiāng)na-(-2b)=lna+2-4a,
令g(a)=lna+2-4a,(a>0)
則g′(a)=$\frac{1}{a}$-4=$\frac{1-4a}{a}$,
當(dāng)0<a<$\frac{1}{4}$時(shí),g′(a)>0,g(a)單調(diào)遞增;
當(dāng)a>$\frac{1}{4}$時(shí),g′(a)<0,g(a)單調(diào)遞減.
因此g(a)<g($\frac{1}{4}$)=1-ln4<0,
故lna<-2b.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | log34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<0,△>0 | B. | a<0,△≥0 | C. | a>0,△≤0 | D. | a>0,△≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com