在直角坐標(biāo)平面上,求滿足不等式組的整點(diǎn)的個(gè)數(shù).

答案:
解析:

  思路與技巧:數(shù)字較大,不易逐一清點(diǎn),關(guān)鍵是找出規(guī)律,分別令y=0,1,2,…,找出這些線上的整點(diǎn)數(shù),然后把它們相加即可,如圖:

  

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),|
OM
|=
5
,
ON
=
2
5
5
OM
.過點(diǎn)M作MM1⊥y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
.記點(diǎn)T的軌跡為曲線C,點(diǎn)A(5,0)、B(1,0),過點(diǎn)A作直線l交曲線C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),,.過點(diǎn)M作MM1軸于M1,過N作NN1軸于點(diǎn)N1.記點(diǎn)T的軌跡為曲線C,點(diǎn)A(5,0)、B(1,0),過點(diǎn)A作直線交曲線C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).

(Ⅰ)求曲線C的方程;

(Ⅱ)證明不存在直線,使得;

(Ⅲ)過點(diǎn)P作軸的平行線與曲線C的另一交點(diǎn)為S,若,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(4)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過點(diǎn)M作MM1⊥y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線C,點(diǎn)A(5,0)、B(1,0),過點(diǎn)A作直線l交曲線C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷14(文科)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過點(diǎn)M作MM1⊥y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線C,點(diǎn)A(5,0)、B(1,0),過點(diǎn)A作直線l交曲線C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案