【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中將由四個(gè)直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

【答案】(1).(2)(i) 見證明;(ii)見解析

【解析】

1)根據(jù)已知填均可;(2)(i)先證明平面,再證明平面⊥平面;(ii) 在平面中,記,,連結(jié),則為所求的.再證明是二面角的平面角.

(1).

(2)(i)在三棱錐中,,,

所以平面,

平面,所以,

,,所以平面.

平面,所以,

因?yàn)?/span>,所以平面,

因?yàn)?/span>平面,所以平面平面.

(ii)

在平面中,記,連結(jié),則為所求的.

因?yàn)?/span>平面平面,所以,

因?yàn)?/span>平面,平面,所以

,所以平面.

平面平面,所以,.

所以就是二面角的一個(gè)平面角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線被圓截得的弦長為4,則當(dāng)取最小值時(shí)直線的斜率為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞市公交公司為了方便廣大市民出行,科學(xué)規(guī)劃公交車輛的投放,計(jì)劃在某個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車的間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,選取一天中的六個(gè)不同的時(shí)段進(jìn)行抽樣調(diào)查,經(jīng)過統(tǒng)計(jì)得到如下數(shù)據(jù):

間隔時(shí)間(分鐘)

8

10

12

14

16

18

等候人數(shù)(人)

16

19

23

26

29

33

調(diào)查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若兩組差值的絕對(duì)值均不超過1,則稱所求的回歸方程是“理想回歸方程”.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,

1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程;

2)判斷(1)中的方程是否是“理想回歸方程”:

3)為了使等候的乘客不超過38人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為檢驗(yàn)車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù),近似為零件樣本方差.

(1)求這批零件樣本的的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)假設(shè)生產(chǎn)狀態(tài)正常,求;

(3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?

附:;若,則, ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定圓,動(dòng)圓過點(diǎn) 且與圓相切,記圓心的軌跡為

(1)求曲線的方程;

(2)已知直線 交圓兩點(diǎn).是曲線上兩點(diǎn),若四邊形的對(duì)角線,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)支付也稱為移動(dòng)支付,是指允許移動(dòng)用戶使用其移動(dòng)終端(通常是手機(jī))對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動(dòng)支付在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有100個(gè)人,把這100個(gè)人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求;

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到表2:

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關(guān)于t的線性回歸方程;

(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

(3)用所求回歸方程預(yù)測到2010年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

附:對(duì)于線性回歸方程,

其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計(jì)師的你,對(duì)TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時(shí)穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

同步練習(xí)冊(cè)答案