設(shè)P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2py(p≠0)的異于原點的交點

(1)若a=1,b=2,p=2,求點Q的坐標

(2)若點P(a,b)(ab≠0)在橢圓y2=1上,p

求證:點Q落在雙曲線4x2-4y2=1上

(3)若動點P(a,b)滿足ab≠0,p,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由

答案:
解析:

  解析:(1)當時,

  解方程組即點的坐標為;3分

  (2)證明:由方程組

  即點的坐標為;5分

  時橢圓上的點,即,

  因此點落在雙曲線上;8分

  (3)設(shè)所在的拋物線方程為;10分

  將代入方程,得,即;12分

  當時,,此時點的軌跡落在拋物線上;

  當時, ,此時點的軌跡落在圓上;

  當時,,此時點的軌跡落在橢圓上;

  當,此時點的軌跡落在雙曲線上;16分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)空間向量
a
、
b
、
p
,則下列命題中正確命題的序號:
 

①若
p
=x
a
+y
b
,則
p
a
、
b
共面;
②若
p
a
b
共面,則
p
=x
a
+y
b
;
③若
MP
=x
MA
+y
MB
,則P、M、A、B共面;
④若P、M、A、B共面,則
MP
=x
MA
+y
MB

⑤若存在λ,μ∈R使λ
a
b
=0,則λ=μ=0
⑥若
a
,
b
不共線,則空間任一向量p=λ
a
b
 (λ,μ∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)在直角坐標系xoy中,曲線C1上的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=-2的距離等于該點與圓C2上點的距離的最小值.
(Ⅰ)求曲線C1的方程
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別于曲線C1相交于點A,B和C,D.證明:當P在直線x=-4上運動時,四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=-2的距離等于該點與圓C2上點的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:當P在直線x=-4上運動時,四點A,B,C,D的縱坐標之積為定值.
(Ⅲ)設(shè)P(-4,1)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)空間向量
a
b
、
p
,則下列命題中正確命題的序號:______
①若
p
=x
a
+y
b
,則
p
a
、
b
共面;
②若
p
a
、
b
共面,則
p
=x
a
+y
b
;
③若
MP
=x
MA
+y
MB
,則P、M、A、B共面;
④若P、M、A、B共面,則
MP
=x
MA
+y
MB

⑤若存在λ,μ∈R使λ
a
b
=0,則λ=μ=0
⑥若
a
b
不共線,則空間任一向量p=λ
a
b
 (λ,μ∈R)

查看答案和解析>>

同步練習(xí)冊答案