分析 (1)由f(x)=tanx-sinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),能比較f(-$\frac{π}{3}$),f(-$\frac{π}{4}$),f($\frac{π}{3}$)與0的大小關(guān)系.
(2)猜想:當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;當(dāng)x=0時,f(x)=0.利用導(dǎo)數(shù)性質(zhì)能進(jìn)行證明.
解答 解:(1)∵f(x)=tanx-sinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$).
∴f(-$\frac{π}{3}$)<0,
f(-$\frac{π}{4}$)<0,
f($\frac{π}{3}$)>0.
(2)猜想:當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;
當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;
當(dāng)x=0時,f(x)=0.
證明:∵f(x)=tanx-sinx,
∴${f}^{'}(x)=(\frac{sinx}{cosx})^{'}-(sinx)^{'}$=$\frac{1-co{s}^{3}x}{co{s}^{2}x}$,
∵x∈(-$\frac{π}{2}$,$\frac{π}{2}$),∴cosx∈(0,1],∴f′(x)≥0,
∴f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增,f(0)=tan0-sin0=0,
∴當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;
當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;
當(dāng)x=0時,f(x)=0.
點(diǎn)評 本題考查三角函數(shù)的求法及應(yīng)用,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com