設(shè)函數(shù)

   (1)求f(0);w.w.w.k.s.5.u.c.o.m             

   (2)試問(wèn)函數(shù)f(x)是不是R上的單調(diào)函數(shù)?證明你的結(jié)論;

   (3)設(shè)

         滿足的條件.

解析:(1)令m=0,n>0得f(n)=f(0)?f(n),

n>0,∴f(n)>1

f(0)=1.………………………………4分

注:令m=0,n=0,且沒(méi)有討論者,扣2分,得2分。w.w.w.k.s.5.u.c.o.m             

(2)設(shè)任意x1<x2,則

f(x)在R上為增函數(shù).……………………………………8分

   (3)由

 w.w.w.k.s.5.u.c.o.m             

……………………………………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省宜春市上高二中高二(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時(shí)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省南昌二中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時(shí)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測(cè)試卷08(解析版) 題型:解答題

設(shè)關(guān)于x的方程x2-mx-1=0 有兩個(gè)實(shí)根α、β,且α<β.定義函數(shù)
(1)求αf(α)+βf(β) 的值;
(2)判斷f(x) 在區(qū)間(α,β) 上的單調(diào)性,并加以證明;
(3)若λ,μ 為正實(shí)數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市虹口區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時(shí)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案