【題目】已知函數(shù)fx)=2cosxsinxcosx.

1)求函數(shù)fx)的最小正周期及單調(diào)遞減區(qū)間:

2)將fx)的圖象向左平移個(gè)單位后得到函數(shù)gx)的圖象,若方程gx)=m在區(qū)間[0,]上有解,求實(shí)數(shù)m的取值范圍.

【答案】(1)函數(shù)的最小正周期為π;函數(shù)的減區(qū)間為[],kZ(2)m[21]

【解析】

1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論;

2)利用正弦函數(shù)的定義域和值域,求得的范圍,進(jìn)而可得的范圍.

1)函數(shù)fx)=2cosxsinxcosxsin2x﹣(1+cos2x)=2sin2x)﹣1

故函數(shù)的最小正周期為π.

22x2,求得x,可得函數(shù)的減區(qū)間為[],kZ.

2)將fx)的圖象向左平移個(gè)單位后,得到函數(shù)gx)=2sin2x)﹣12sin2x)﹣1的圖象.

在區(qū)間[0]上,2x[],sin2x)∈[1],fx)∈[21].

若方程gx)=m在區(qū)間[0,]上有解,則m[21].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過(guò)點(diǎn)M(10)的直線與圓C交于A,B兩點(diǎn)(Ax軸上方),問(wèn)在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,四梭錐中,底面,

,為線段上一點(diǎn),,的中點(diǎn).

(I)證明:平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,過(guò)左焦點(diǎn)且垂直于軸的直線交橢圓兩點(diǎn),且.

(Ⅰ)的方程;

(Ⅱ)若圓上一點(diǎn)處的切線交橢圓于兩不同點(diǎn),求弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).

(1)證明:平面平面;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交元()的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬(wàn)件.

)求分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;

)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)最大,并求出的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,試討論關(guān)于方程實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有一個(gè)容量為300噸的水塔,每天從早上6時(shí)起到晚上10時(shí)止供應(yīng)該廠的生產(chǎn)和生活用水,已知該廠生活用水為每小時(shí)10噸,工業(yè)用水量W()與時(shí)間t(小時(shí),且規(guī)定早上6時(shí)t=0)的函數(shù)關(guān)系為:W=100.水塔的進(jìn)水量分為10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí),每小時(shí)進(jìn)水量就增加10噸.若某天水塔原有水100噸,在開始供水的同時(shí)打開進(jìn)水管.

(1)若進(jìn)水量選擇為2級(jí),試問(wèn):水塔中水的剩余量何時(shí)開始低于10噸?

(2)如何選擇進(jìn)水量,既能始終保證該廠的用水(水塔中水不空)又不會(huì)使水溢出?

查看答案和解析>>

同步練習(xí)冊(cè)答案