【題目】如下圖,四梭錐中,⊥底面,
,為線段上一點,,為的中點.
(I)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為參數(shù),且.
(Ⅰ)當時,判斷函數(shù)是否有極值.
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.
(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論:
①當a為任意實數(shù)時,直線(a﹣1)x﹣y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標準方程是;
③拋物線的準線方程為.
④已知雙曲線,其離心率e∈(1,2),則m的取值范圍是(﹣12,0).
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知為異面直線,平面平面.直線滿足,則( )
A. ,且 B. ,且
C. 與相交,且交線垂直于 D. 與相交,且交線平行于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育部門為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機抽取了100人的身高數(shù)據(jù)進行統(tǒng)計分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計該市高一學(xué)生的身高概率.
(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中的值.
(II)若從該市高一學(xué)生中隨機選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);
(2)當日產(chǎn)量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為 ,過點的直線的參數(shù)方程為(為參數(shù)),與交于兩點
(1) 求的直角坐標方程和的普通方程;
(2) 若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:
(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1當時,求不等式的解集;
2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com