15.已知平行六面體ABCD-A′B′C′D′中,底面是邊長為1的菱形,且DD′=2,∠BAD=∠BAA′=∠DAA′=60°,則AC′等于( 。
A.$\frac{17}{2}$B.$\sqrt{11}$C.$\sqrt{6}$D.6

分析 可根據(jù)條件畫出圖形,根據(jù)向量加法的幾何意義有$\overrightarrow{AC′}=\overrightarrow{AA′}+\overrightarrow{A′B′}+\overrightarrow{A′D′}$,這樣由條件便可進(jìn)行數(shù)量積的運(yùn)算求出${\overrightarrow{AC′}}^{2}$的值,即求出$|\overrightarrow{AC′}|$的值,從而得到AC′的值.

解答 解:如圖,根據(jù)條件:
$|\overrightarrow{AC′}{|}^{2}=|\overrightarrow{AA′}+\overrightarrow{A′B′}+\overrightarrow{B′C′}{|}^{2}$
=$|\overrightarrow{AA′}+\overrightarrow{A′B′}+\overrightarrow{A′D′}{|}^{2}$
=${\overrightarrow{AA′}}^{2}+{\overrightarrow{A′B′}}^{2}+{\overrightarrow{A′D′}}^{2}+2\overrightarrow{AA′}•\overrightarrow{A′B′}$$+2\overrightarrow{AA′}•\overrightarrow{A′D′}+2\overrightarrow{A′B′}•\overrightarrow{A′D′}$
=4+1+1+2+2+1
=11
∴$|\overrightarrow{AC′}|=\sqrt{11}$
即AC′=$\sqrt{11}$.
故選:B.

點(diǎn)評(píng) 考查平行六面體的概念,菱形的概念,以及向量加法的幾何意義,相等向量的概念,向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,|$\overrightarrow{AB}$|=c,|$\overrightarrow{AC}$|=b.
(Ⅰ)若b=3,c=5,sinA=$\frac{4}{5}$,求|$\overrightarrow{BC}$|;
(Ⅱ)若|$\overrightarrow{BC}$|=2,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{3}$,則當(dāng)|$\overrightarrow{AB}$|取到最大值時(shí),求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點(diǎn).
(1)求證:直線MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點(diǎn)Q,求二面角Q-MD-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.長方體ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2,點(diǎn)P在棱BB1上,則AP+PC1的最小值為$\sqrt{53}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}A{A_1}$,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)設(shè)AA1=2,A1B1的中點(diǎn)為P,求點(diǎn)P到平面BDC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一點(diǎn).過點(diǎn)E的平面α垂直于平面SAC.
(1)請(qǐng)作出平面α截四棱錐S-ABCD的截面(只需作圖并寫出作法);
(2)當(dāng)SA=AB時(shí),求二面角B-SC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點(diǎn)M是PD的中點(diǎn),作ME⊥PC,交PC于點(diǎn)E.
(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=s-ke-x的圖象在x=0處的切線方程為y=x.
(1)求s,k的值;
(2)若正項(xiàng)數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,證明:數(shù)列{an}是遞減數(shù)列;
(3)若$g(x)=\frac{1}{2}{x^3}-ax(x>0)$,當(dāng)a>1時(shí),討論函數(shù)f(-x)-2與g(x)的圖象公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.我國古代數(shù)學(xué)名著《數(shù)學(xué)九章》中有云:“今有木長二丈四尺,圍之五尺.葛生其下,纏木兩周,上與木齊,問葛長幾何?”其意思為“圓木長2丈4尺,圓周為5尺,葛藤從圓木的底部開始向上生長,繞圓木兩周,剛好頂部與圓木平齊,問葛藤最少長多少尺(注:1丈等于10尺)(  )
A.29尺B.24尺C.26尺D.30尺

查看答案和解析>>

同步練習(xí)冊(cè)答案