分析 (1)求出cosA,利用余弦定理得出a;
(2)利用正弦定理得出外接圓半徑,從而得出外接圓的面積.
解答 解:(1)在△ABC中,∵sinA=$\frac{4}{5}$,∴cosA=$±\frac{3}{5}$.
由余弦定理得:|$\overrightarrow{BC}$|2=a2=b2+c2-2bccosA=9+25±18.
∴a2=16或52.
∴|$\overrightarrow{BC}$|=4或2$\sqrt{13}$.
(2)由題意可知A=$\frac{π}{3}$,a=2.
由正弦定理得$\frac{a}{sinA}=2R$,∴R=$\frac{2\sqrt{3}}{3}$.
∴△ABC的外接圓的面積S=$π×(\frac{2\sqrt{3}}{3})^{2}$=$\frac{4π}{3}$.
點(diǎn)評(píng) 本題考查了正余弦定理的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |$\overrightarrow{a}$|>|$\overrightarrow$| | B. | |$\overrightarrow{a}$|<|$\overrightarrow$| | C. | |$\overrightarrow{a}$|=|$\overrightarrow$| | D. | $\overrightarrow{a}$=$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2×0.44 | B. | 2×0.64 | C. | 3×0.44 | D. | 3×0.64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{2}$ | B. | $\sqrt{11}$ | C. | $\sqrt{6}$ | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com