1.若直線a∥平面α,則a與平面α的所有直線都( 。
A.平行B.異面C.不相交D.不垂直

分析 根據(jù)空間線線關(guān)系的幾何特征和線面平行的幾何特征可得結(jié)論.

解答 解:若直線a∥平面α,
則a與平面α的所有直線都不相交,
故選:C.

點評 本題考查的知識點是直線與平面平行的判定,熟練掌握空間線面平行的幾何特征是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.從6個盒子中選出3個來裝東西,且甲、乙兩個盒子至少有一個被選中的情況有( 。
A.16種B.18種C.22種D.37種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.以下四個對應(yīng):
(1)A=N+,B=N+,f:x→|x-3|
(2)A=Z,B=Q,f:x→$\frac{2}{x}$
(3)A=N+,B=R,f:x→x的平方根; 
(4)A=N,B={-1,1,2,-2},f:x→(-1)x
其中能構(gòu)成從A到B的映射的有( 。﹤.
A..1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A、B、C所對的邊分別為a、b、c,滿足a=2sinA,cosC=-$\frac{1}{2}$
(I)求c邊的大小.
( II)當C在圓O的劣弧$\widehat{AB}$上移動到何處時,△ABC的面積最大,求此時角A的大小,并求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過(-5,0),(3,-3)兩點的直線的方程一般式為3x+8y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知奇函數(shù),當x>0時,f(x)=x3+x2+x+2,當x<0時,f(x)=x3-x2+x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某廠生產(chǎn)的零件外直徑ξ~N(10,0.04),今從該廠上、下午生產(chǎn)的零件中各隨機取出一個,測得其外直徑分別為9.9cm和9.3cm,則可認為( 。
對于正態(tài)總體N(μ,σ2)取值的概率:在區(qū)間(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)內(nèi)取值的概率分別是68.3%,95.4%,99.7%.
A.上午生產(chǎn)情況正常,下午生產(chǎn)情況異常
B.上午生產(chǎn)情況異常,下午生產(chǎn)情況正常
C.上、下午生產(chǎn)情況均正常
D.上、下午生產(chǎn)情況均異常

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2,x≤2\\ 2x,x>2\end{array}$,若f(x)>6,則x的取值范圍是(-∞,-2)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果直線l1:2x-y+2=0,l2:8x-y-4=0與x軸正半軸,y軸正半軸圍成的四邊形封閉區(qū)域(含邊界)中的點,使函數(shù)z=abx+y(a>0,b>0)的最大值為8,則a+b的最小值為4 .

查看答案和解析>>

同步練習(xí)冊答案