已知數(shù)列{an}是等差數(shù)列,且a3=5,a2+a7=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前項(xiàng)和Sn
(1) 2n-1 (2)
本題考查數(shù)列的求和,考查等差數(shù)列的通項(xiàng)公式與等差數(shù)列的性質(zhì),考查裂項(xiàng)法求和,屬于中檔題.
(1)利用等差數(shù)列的性質(zhì)與已知可求得a3=5,以a4=7,從而可求得其公差,進(jìn)一步即可求得數(shù)列{an}的通項(xiàng)公式;
(2)由(1)可知利用累加法即可求得數(shù)列{bn}的前n項(xiàng)和。
解:(1)由已知,
可得 .         ……2分
解之得  a1=1,d=2,           ……4分
∴an = a1+(n-1)d = 2n-1.    ……6分
(2)由(1)可知 = ,     ……8分
數(shù)列的前項(xiàng)和為,則

   ……10分
.     ……12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列是遞增數(shù)列,且滿足
(Ⅰ)若是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(Ⅱ)對(duì)于(Ⅰ)中,令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列的前項(xiàng)和為,且 ;數(shù)列為等差數(shù)列,且 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若(=1,2,3…),為數(shù)列的前項(xiàng)和.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若兩個(gè)等差數(shù)列的前項(xiàng)和分別為、,對(duì)任意的都有
,則=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足:=2,=3,≥2)
(Ⅰ)求:,
(Ⅱ)是否存在實(shí)數(shù),使得數(shù)列∈N*)是等差數(shù)列?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,數(shù)列{an}滿足:,
(Ⅰ)求證:;
(Ⅱ)判斷an與an+1的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)y=3x-2的圖像上。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,已知,那么它的前8項(xiàng)和等于_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列中,的值是(    )
A.15B.30C. 31D. 64

查看答案和解析>>

同步練習(xí)冊(cè)答案