【題目】已知函數(shù)的圖象關(guān)于軸對稱,當(dāng)函數(shù)在區(qū)間同時遞增或同時遞減時,把區(qū)間叫做函數(shù)的“不動區(qū)間”.若區(qū)間為函數(shù)的“不動區(qū)間”,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的不動區(qū)間,則函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|﹣t|在[1,2]上單調(diào)性相同,則(2x﹣t)(2﹣x﹣t)0在[1,2]上恒成立,進(jìn)而得到答案.

∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,

F(x)=f(﹣x)=|2﹣x﹣t|,

∵區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的不動區(qū)間”,

∴函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|2﹣x﹣t|在[1,2]上單調(diào)性相同,

y=2x﹣t和函數(shù)y=2﹣x﹣t的單調(diào)性相反,

(2x﹣t)(2﹣x﹣t)0在[1,2]上恒成立

1﹣t(2x+2﹣x+t20在[1,2]上恒成立,

2﹣xt2x在[1,2]上恒成立,

t2,

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5

(1)求出y關(guān)于x的線性回歸方程

(2)試預(yù)測加工10個零件需要多少小時?

(注:=,=-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.

注:年份代碼1~7分別對應(yīng)年份2010~2016.

(Ⅰ)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2018年我國生活垃圾無害化處理量.

參考數(shù)據(jù):,,,.

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程為ρ2.

(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;

(2)P(x,y)是曲線C上的一個動點(diǎn),求3x4y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中.

(1)若,,求函數(shù)在處的切線方程;

(2)討論的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)中點(diǎn),在線段上是否存在一點(diǎn),使得平面?若存在,求出的長;若不存在,請說明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)若存在 ,使函數(shù)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某運(yùn)動員從A市出發(fā)沿海岸一條筆直公路以每小時15km的速度向東進(jìn)行長跑訓(xùn)練,長跑開始時,在A市南偏東方向距A75km,且與海岸距離為45km的海上B處有一艘劃艇與運(yùn)動員同時出發(fā),要追上這位運(yùn)動員.

1)劃艇至少以多大的速度行駛才能追上這位運(yùn)動員?

2)求劃艇以最小速度行駛時的行駛方向與所成的角.

3)若劃艇每小時最快行駛11.25km,劃艇全速行駛,應(yīng)沿何種路線行駛才能盡快追上這名運(yùn)動員,最快需多長時間?

查看答案和解析>>

同步練習(xí)冊答案