若正整數(shù)n滿(mǎn)足,則n __________________(lg20.3010)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1,Sn)在直線2x+y-2=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列{Sn+λn+
λ
2n
}
為等差數(shù)列?若存在,求出λ的值,若不存在,則說(shuō)明理由;
(3)設(shè){bn}滿(mǎn)足:bn=
2-n
(an+1)(an+1+1)
,Tn
為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若數(shù)列{An}滿(mǎn)足An+1=An2,則稱(chēng)數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前n項(xiàng)之積為T(mén)n,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn關(guān)于n的表達(dá)式.
(Ⅲ)記bn=log(1+2an)Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且T4=4,b5=6.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若正整數(shù)n1,n2,…,nt,…滿(mǎn)足5<n1<n2<…<nt,…且b3,b5bn1,bn2,…,bnt,…成等比數(shù)列,求數(shù)列{nt}的通項(xiàng)公式(t是正整數(shù));
(3)給出命題:在公比不等于1的等比數(shù)列{an}中,前n項(xiàng)和為Sn,若am,am+2,am+1成等差數(shù)列,則Sm,Sm+2,Sm+1也成等差數(shù)列.試判斷此命題的真假,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,如果存在常數(shù)T(T∈N+),使得an+T=an對(duì)于任意正整數(shù)n均成立,那么就稱(chēng)數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿(mǎn)足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列{xn}的周期為3時(shí),則數(shù)列{xn}的前2012項(xiàng)的和S2012為( 。
A、1339B、1340C、1341D、1342

查看答案和解析>>

同步練習(xí)冊(cè)答案