(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系下,圓ρ=2cos(θ+
π
2
)
上的點(diǎn)與直線ρsin(θ+
π
4
)=
2
上的點(diǎn)的最大距離是______.
ρ=2cos(θ+
π
2
)
 即 ρ=-2sinθ,即 ρ2=-2ρsinθ,即 x2+y2=-2y,
x2+(y+1)2=1,表示以C(0,-1)為圓心,以1為半徑的圓.
直線ρsin(θ+
π
4
)=
2
2
2
ρcosθ
+
2
2
ρsinθ
=
2
,即
2
2
x
+
2
2
y
=
2

即 x+y-2=0.
圓心C(0,-1)到直線x+y-2=0的距離等于
|0-1-2|
2
=
3
2
2
,
故圓上的點(diǎn)到直線x+y-2=0的距離的最大值為
3
2
2
+r=
3
2
2
+1

故答案為
3
2
2
+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長(zhǎng)度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時(shí)實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過(guò)點(diǎn)P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案