設(shè)三棱錐P-ABC的三條棱PAPB、PC分別為a、bc,PAPB、PC之間的夾角為a、b、g.求證:,其中j==(().

 

答案:
解析:

證:設(shè)C在平面PAB上的射影為H,作HD^PAD,連結(jié)CD,則ÐCDH為二面角C-PA-B的平面角,記為q,則HC==CDsin==C×sinb×sinq

    ∴ V==abcsingsinbsinq,又由三角形余弦定理得:

    cos=.∴ V==

    ==

    ==

    ==

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)三棱錐P-ABC的頂點P在平面ABC上的射影是H,給出以下命題:
①若PA⊥BC,PB⊥AC,則H是△ABC的垂心;
②若PA,PB,PC兩兩互相垂直,則H是△ABC的垂心;
③若∠ABC=90°,H是AC的中點,則PA=PB=PC;
④若PA=PB=PC,則H是△ABC的外心,其中正確命題的命題是
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)三棱錐P-ABC的頂點P在平面ABC上的射影是H,給出以下命題:
①若PA,PB,PC兩兩互相垂直,則H是△ABC的垂心
②若∠ABC=90°,H是斜邊AC上的中點,則PA=PB=PC
③若PA=PB=PC,則H是△ABC的外心
④若P到△ABC的三邊的距離相等,則H為△ABC的內(nèi)心
其中正確命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABC的頂點P在圓柱曲線O1O上,底面△ABC內(nèi)接于⊙O的直徑,且∠ABC=60°,O1O=AB=4,⊙O1上一點D在平面ABC上的射影E恰為劣弧AC的中點.
(1)設(shè)三棱錐P-ABC的體積為
3
3
,求證:DO⊥平面PAC;
(2)若⊙O上恰有一點F滿足DF⊥平面PAC,求二面角D-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)三棱錐P—ABC的頂點P在底面ABC內(nèi)射影O(在△ABC內(nèi)部,即過P作PO⊥底面ABC,交于O),且到三個側(cè)面的距離相等,則O是△ABC的(    )

A.外心               B.垂心               C.內(nèi)心               D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)三棱錐P—ABC的頂點P在底面ABC內(nèi)射影O(在△ABC內(nèi)部,即過P作PO⊥底面ABC,交于O),且到三個側(cè)面的距離相等,則O是△ABC的(    )

A.外心               B.垂心               C.內(nèi)心               D.重心

查看答案和解析>>

同步練習(xí)冊答案