16.設(shè)X~N(1,δ2),其正態(tài)分布密度曲線如圖所示,且P(X≥3)=0.0228,那么向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為(  )
附:(隨機(jī)變量ξ服從正態(tài)分布N(μ,δ2),則P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%
A.6038B.6587C.7028D.7539

分析 求出P(0<X≤1)=1-$\frac{1}{2}$×0.6826=1-0.3413=0.6587,即可得出結(jié)論.

解答 解:由題意P(0<X≤1)=1-$\frac{1}{2}$×0.6826=1-0.3413=0.6587,
則落入陰影部分點(diǎn)的個(gè)數(shù)的估計(jì)值為10000×0.6587=6857,
故選:B.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查正態(tài)分布中兩個(gè)量μ和σ的應(yīng)用,考查曲線的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集為D,下列命題中正確的是(  )
A.?(x,y)∈D,x+2y≤-1B.?(x,y)∈D,x+2y≥-2C.?(x,y)∈D,x+2y≤3D.?(x,y)∈D,x+2y≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若sin($\frac{π}{6}$-α)=$\frac{1}{3}$,則2cos2($\frac{π}{6}$+$\frac{α}{2}$)-1=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的圖象如圖所示,則函數(shù)y=f(x)+ω的對(duì)稱中心坐標(biāo)為( 。
A.($\frac{2}{3}$kπ+$\frac{π}{24}$,$\frac{3}{2}$)(k∈Z)B.(3kπ-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)C.($\frac{1}{2}$kπ+$\frac{5π}{8}$,$\frac{3}{2}$)(k∈Z)D.($\frac{3}{2}kπ$-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合M={x|x2+3x+2>0},集合N={x|($\frac{1}{2}$)x≤4},則M∪N=( 。
A.{x|x≥-2}B.{x|x>-1}C.{x|x≤-2}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.點(diǎn)E和F分別在線段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的值為(  )
A.$\frac{5}{3}$B.$\frac{14}{9}$C.$\frac{29}{18}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}是各項(xiàng)均不為零的等差數(shù)列,Sn為其前n項(xiàng)和,且an=$\sqrt{{S_{2n-1}}}({n∈{N^*}})$.若不等式$\frac{λ}{a_n}$≤$\frac{n+8}{n}$對(duì)任意n∈N*恒成立,則實(shí)數(shù)λ的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,b=$\sqrt{7}$,a=3,tanC=$\frac{\sqrt{3}}{2}$,則c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知命題p:若x2-1>0,則x>1,命題q:若x2-1>0,則x<-1,寫出命題p∨q為若x2-1>0,則x>1或x<-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案