函數(shù)f(x)=log
1
2
(x2-ax+a)在(-∞,
2
)上單調(diào)遞增,求a的取值范圍.
分析:由題設(shè)條件根據(jù)對數(shù)函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可知
2
在y=x2-ax+a的對稱軸是x=
a
2
的左側(cè),且當(dāng)x=
2
時(shí),y=x2-ax+a>0.由此可建立方程組
2
a
2
2-
2
a+a>0
,解這個(gè)方程組可以得到故a的取值范圍.
解答:解:∵函數(shù)f(x)=log
1
2
(x2-ax+a)在(-∞,
2
)上單調(diào)遞增,y=x2-ax+a的對稱軸是x=
a
2

2
a
2
2-
2
a+a>0
,解得2
2
<a<2
2
+2

故a的取值范圍是(2
2
,2
2
)
點(diǎn)評:要求學(xué)生掌握復(fù)合函數(shù)的單調(diào)性判斷方法:同增異減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案