5.原命題為“若兩條直線的斜率相等,則這兩條直線平行”,關于其逆命題、否命題、逆否命題真假性的判斷依次如下,正確的是( 。
A.真、假、真B.假、假、真C.真、真、假D.假、假、假

分析 根據(jù)題意判斷原命題的真假,根據(jù)逆命題的定義寫出逆命題并判斷真假,再利用四種命題的真假關系判斷否命題與逆否命題的真假.

解答 解:“若兩條直線的斜率相等,則這兩條直線平行”的逆命題是”兩條直線平行、兩條直線的斜率相等“是假命題,直線斜率可能不存在,
”若兩條直線的斜率相等,則這兩條直線平行”的否命題是“若兩條直線的斜率不相等,則這兩條直線不平行”是假命題、直線斜率可能不存在,
若兩條直線的斜率相等,則這兩條直線平行”是真命題,故其逆否命題是真命題,
故選:B.

點評 本題考查了四種命題的定義及真假關系,考查了共軛復數(shù)的定義,熟練掌握四種命題的真假關系是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)當a=1時,求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值(其中e是自然對數(shù)的底數(shù));
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則S5=( 。
A.16B.$\frac{16}{81}$C.$\frac{81}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則可輸入的實數(shù)x值的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$\frac{sinα}{sinα+cosα}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(tanα,2),則$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若向量$\overrightarrow a=({1,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$滿足$({3\overrightarrow a-\overrightarrow b})⊥\overrightarrow c$,則x=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e為自然對數(shù)的底數(shù)).
(I)若f(x)圖象過點(1,-1),求f(x)的單調(diào)區(qū)間;
(II)若f(x)在區(qū)間($\frac{1}{e}$,e)上有且只有一個極值點,求實數(shù)a的取值范圍;
(III)函數(shù)F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,當a>e${\;}^{\frac{10}{3}}$時,函數(shù)F(x)過點A(1,m)的切線至少有2條,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知i是虛數(shù)單位,則復數(shù)z=$\frac{4+3i}{3-4i}$的共軛復數(shù)的虛部是( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知數(shù)列{an}的前n項和S${\;}_{n}=A{q}^{n}+B(q≠0)$,則“A=-B“是“數(shù)列{an}是等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案