14.設(shè)α是第二象限角,cosα=-$\frac{3}{5}$,則tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

分析 根據(jù)題意,利用同角三角函數(shù)的基本關(guān)系算出sinα,可得tanα.

解答 解:∵α是第二象限角,cosα=-$\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$.
故選:D.

點(diǎn)評(píng) 考查了同角三角函數(shù)的基本關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知E、F兩點(diǎn)分別是正方形ABCD邊AD、AB的中點(diǎn),EF交AC于點(diǎn)M,GC垂直于ABCD所在平面.
求證:EF⊥平面GMC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定積分$\int_0^1{(3{x^2}+{e^x}+1)dx}$的值為e+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,1)$,若$\overrightarrow a⊥\overrightarrow b$,則m=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,設(shè)直線(xiàn)y=-x+2與圓x2+y2=r2(r>0)交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若圓上一點(diǎn)C滿(mǎn)足$\overrightarrow{OC}$=$\frac{5}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$,則r=(  )
A.2$\sqrt{2}$B.5C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.全集U={1,2,3,4,5},集合A={1,2},集合B={1,3,5},則圖中陰影部分所表示的集合是( 。
A.{1}B.{1,2,3,5}C.{ 2,3,5}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC中內(nèi)角A為鈍角,則復(fù)數(shù)(sinA-sinB)+i(sinB-cosC)對(duì)應(yīng)點(diǎn)在( 。
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}的通項(xiàng)公式為an=3n-23,當(dāng)Sn取到最小時(shí),n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.一個(gè)圓錐的側(cè)面展開(kāi)圖是半徑為a的半圓,則此圓錐的體積為$\frac{\sqrt{3}{a}^{3}π}{24}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案