已知0<α<
π
4
,則
lim
n→∞
sinnα-cosnα
sinnα+cosnα
=
 
考點:極限及其運算
專題:計算題
分析:由三角函數(shù)易得0<tanα<1,可得
sinnα-cosnα
sinnα+cosnα
=1-
2
1+tannα
,由極限的運算性質可得.
解答: 解:∵0<α<
π
4
,∴0<tanα<1,
sinnα-cosnα
sinnα+cosnα
=
tannα-1
tannα+1

=
tannα+1-2
tannα+1
=1-
2
1+tannα

lim
n→∞
sinnα-cosnα
sinnα+cosnα

=
lim
n→∞
(1-
2
1+tannα

=1-
2
1+0
=-1
故答案為:-1
點評:本題考查極限的運算,涉及三角函數(shù)的運算,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若動點A(x1,y1),B(x2,y2)分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,點N在圓C:x2+y2=8上移動,則AB中點M到點N距離|MN|的最小值為( 。
A、
2
B、2(
3
-
2
)
C、
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4px(p>0)與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點F,點A是兩個曲線的一個交點,O為坐標原點,且OA=FA,則雙曲線的離心率的平方為( 。
A、2
B、
13-
153
2
C、
13-
153
2
13+
153
2
D、
13+
153
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某電視臺有一檔綜藝節(jié)目,其中有一個搶答環(huán)節(jié),有甲、乙兩位選手進行搶答,規(guī)則如下:若選手搶到答題權,答對得20分,答錯或不答則送給對手10分.已知甲、乙兩位選手搶到答題權的概率均相同,且每道題是否答對的機會是均等的,若比賽進行兩輪.
(1)求甲搶到1題的概率;
(2)求甲得到10分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
2x,(x>1)
ax+1,(x≤1)
為增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,cosβ=-
2
3
,α,β均在第二象限,求sin(α+β)和sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,判斷三角形的形狀
(1)在△ABC中,
1-cosA
1-cosB
=
a
b
;
(2)在△ABC中,
a3+b3-c3
a+b-c
=c2
且sinAsinB=
3
4
;
(3)在ABC中,(a2-b2)sin(A+B)=(a2+b2)sin(A-B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+y2+mx+8y-8=0和圓C2:x2+y2-4x+ny-2=0的公共弦AB所在直線方程為x+2y-1=0,兩圓C1,C2的圓心距為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
b
滿足|
a
|=
3
,|
b
|=2,
a
b
=-3,則|
a
+2
b
|=( 。
A、1
B、
7
C、4+
3
D、2
7

查看答案和解析>>

同步練習冊答案