函數(shù)f(x)是定義在R上的奇函數(shù),下列命題
①f(0)=0;②若f(x)在[0,+∞)上有最小值為-1,則f(x)在(-∞,0]上有最大值為1;
③若f(x)在[1,+∞)上為增函數(shù),則f(x)在(-∞,-1]上為減函數(shù);
④若x>0時,f(x)=x2-2x,則x<0時,f(x)=-x2-2x其中正確命題的個數(shù)是.


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
C
分析:先根據(jù)奇函數(shù)的定義判斷出①對;根據(jù)奇函數(shù)的圖象關(guān)于原點對稱判斷出②對③錯;通過奇函數(shù)的定義求出當(dāng)x<0的解析式,判斷出④對.
解答:因為f(x)是定義在R上的奇函數(shù),
所以f(-x)=-f(x),所以f(0)=0,
故①對;
因為奇函數(shù)的圖象關(guān)于原點對稱,
所以f(x)在[0,+∞)上有最小值為-1,則f(x)在(-∞,0]上有最大值為1;
故②對;
因為奇函數(shù)的圖象關(guān)于原點對稱,
所以f(x)在[1,+∞)上為增函數(shù),則f(x)在(-∞,-1]上為增函數(shù);
故③錯;
對于④,設(shè)x<0,則-x>0,
因為x>0時,f(x)=x2-2x,
所以f(-x)=(-x)2-2(-x)=x2+2x,
因為f(x)是定義在R上的奇函數(shù),
所以f(x)=-x2-2x,
故④對;
所以正確的命題有①②④,
故選C.
點評:本題考查奇函數(shù)的定義、考查奇函數(shù)的圖象關(guān)于原點對稱、考查根據(jù)函數(shù)的奇偶性求函數(shù)的解析式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)時
,f(x)=log2(-3x+1),則f(2011)=(  )
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表達(dá)式;
(II)求證:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實數(shù)x的取值范圍為
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時,f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在實數(shù)a,使得當(dāng)x∈(0,e]時f(x)的最大值是-3,如果存在,求出實數(shù)a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注:此題選A題考生做①②小題,選B題考生做①③小題.
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時有f(x)=
4xx+4

①求f(x)的解析式;
②(選A題考生做)求f(x)的值域;
③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案