4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-3y+3≤0}\\{y-2≥0}\end{array}\right.$,則z=-2x+y的最大值是0.

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用直線平移法進(jìn)行求解即可.

解答 解:作出x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-3y+3≤0}\\{y-2≥0}\end{array}\right.$,不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=-2x+y,得y=2x+z表示,斜率為2縱截距為Z的一組平行直線
平移直線y=2x+z,當(dāng)直線y=2x+z經(jīng)過(guò)點(diǎn)A時(shí),
直線y=2x+z的截距最大,此時(shí)z最大,由$\left\{\begin{array}{l}{y=2}\\{x-y+1=0}\end{array}\right.$解得A(1,2)
此時(shí)-2x+y=0,即此時(shí)z=0,
故答案為:0.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用z的幾何意義是解決線性規(guī)劃問(wèn)題的關(guān)鍵,注意利用數(shù)形結(jié)合來(lái)解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知偶函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期為π
(Ⅰ)求f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域
(Ⅱ)將f(x)圖象上的所有點(diǎn)向右平移$\frac{π}{2}$個(gè)單位,橫坐標(biāo)縮短到原來(lái)的$\frac{2}{3}$倍,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)g(x)的圖象,求方程g(x)=$\frac{1}{2}$x$-\frac{π}{12}$的所有實(shí)數(shù)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若sinA=sinC,b2-a2=ac,則∠A=( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在(x-$\frac{3}{\sqrt{x}}$)6的二項(xiàng)展開式中,常數(shù)項(xiàng)為1215.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得到一個(gè)奇函數(shù)的圖象,則φ等于( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.四邊形ABCD為平行四邊形,若$\overrightarrow{AB}$=(2,3),$\overrightarrow{AD}$=(-1,2),則$\overrightarrow{AC}$+$\overrightarrow{BD}$=(  )
A.(-2,4)B.(4,6)C.(-6,-2)D.(-1,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|(x+1)(x-3)≤0},集合B={y|y=2x,x∈R},則A∩B=( 。
A.(0,3]B.[-1,3]C.(0,3)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1的值域[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且滿足f(x)+f′(x)<-2,f(1)=2,則不等式exf(x)>4e-2ex(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(-∞,1)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案