分析 設AB=1,設CG=a,則CF=1-a,計算FG,根據面積比列方程解出a,得出CG,CF,得出θ的值.
解答 解:設正方形ABCD的邊長為1,CG=a,則BF=CG=a,CF=1-a,
∴FG=$\sqrt{C{F}^{2}+C{G}^{2}}$=$\sqrt{2{a}^{2}-2a+1}$.
∴正方形EFGH的面積S=FG2=2a2-2a+1=$\frac{2}{3}$.
解得a=$\frac{1}{2}±\frac{\sqrt{3}}{6}$.
∴CG=$\frac{1}{2}+\frac{\sqrt{3}}{6}$,CF=$\frac{1}{2}-\frac{\sqrt{3}}{6}$,或者CG=$\frac{1}{2}-\frac{\sqrt{3}}{6}$,CF=$\frac{1}{2}+\frac{\sqrt{3}}{6}$.
∴tanθ=$\frac{CG}{CF}$=2+$\sqrt{3}$或2-$\sqrt{3}$.
∴θ=arctan(2+$\sqrt{3}$)或θ=arctan(2-$\sqrt{3}$).
點評 本題考查了解三角形的實際應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-2,1) | B. | (-2,1] | C. | (1,2) | D. | [1,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{17}{18}$ | B. | -$\frac{17}{18}$ | C. | $\frac{18}{17}$ | D. | -$\frac{18}{17}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com