分析 化簡g(x)=$\left\{\begin{array}{l}{0,x∈[2kπ-\frac{π}{2},2kπ+\frac{π}{2}](k∈Z)}\\{2cosx,x∈(2kπ+\frac{π}{2},2kπ+\frac{3π}{2})(k∈Z)}\end{array}\right.$,從而求函數(shù)的最值.
解答 解:g(x)=f(x)-|f(x)|
=$\left\{\begin{array}{l}{0,x∈[2kπ-\frac{π}{2},2kπ+\frac{π}{2}](k∈Z)}\\{2cosx,x∈(2kπ+\frac{π}{2},2kπ+\frac{3π}{2})(k∈Z)}\end{array}\right.$,
故gmax(x)=0,
gmin(x)=g(2kπ+π)=-2,
故答案為:0,-2.
點評 本題考查了分段函數(shù)的應用及分類討論求函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
實物a的值 | -2 | 0 | 0.5 | 1 | 2 |
|PA|的最小值 | 0 | ||||
相應的點P坐標 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com