計算:,,,……,.以上運用的是什么形式的推理?__              __
歸納推理

試題分析:因為歸納推理是指:由某類事物的部分對象具有某些特征,推出該類事物的全部對象具有這些特征的推理,或者由個別事實概括出一般結(jié)論的推理,稱為歸納推理,歸納推理是由部分到整體,由個別到一般的推理;所以由上面的推理過程,可知,應(yīng)用的推理形式為歸納推理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(5分)(2011•陜西)觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此規(guī)律,第五個等式應(yīng)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列各式:_____________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的前項和為,且,,可歸納猜想出的表達(dá)式為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知下列三個方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一個方程有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式:
+2=4;×2=4;+3=;×3=+4=;×4=;…,根據(jù)這些等式反映的結(jié)果,可以得出一個關(guān)于自然數(shù)n的等式,這個等式可以表示為______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則ab=0⇒ab”類比推出“若a,b∈C,則ab=0⇒ab”;
②“若a,b,c,d∈R,則復(fù)數(shù)abi=cdi⇒ac,bd”類比推出“若a,b,c,d∈Q,則abcdac,bd”;
③“若a,b∈R,則ab>0⇒a>b”類比推出“若a,b∈C,則ab>0⇒a>b”.
其中類比得到的結(jié)論正確的個數(shù)是 (  ).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若集合A1,A2,…,An滿足A1∪A2∪…∪An=A,則稱A1,A2,…,An為集合A的一種拆分.已知:
①當(dāng)A1∪A2={a1,a2,a3}時,有33種拆分;
②當(dāng)A1∪A2∪A3={a1,a2,a3,a4}時,有74種拆分;
③當(dāng)A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}時,有155種拆分;
……
由以上結(jié)論,推測出一般結(jié)論:
當(dāng)A1∪A2∪…∪An={a1,a2,a3,…,an+1}時,有    種拆分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

請閱讀下列材料:若兩個正實數(shù)a1,a2滿足,那么.
證明:構(gòu)造函數(shù),因為對一切實數(shù)x,恒有,所以 ,從而得,所以.
根據(jù)上述證明方法,若n個正實數(shù)滿足時,你能得到的結(jié)論為          .(不必證明)

查看答案和解析>>

同步練習(xí)冊答案