橢圓
x=3cosθ+1
y=4sinθ
(θ為參數(shù)),焦點坐標(biāo)為
 
.兩條準(zhǔn)線的方程
 
考點:橢圓的參數(shù)方程
專題:計算題,坐標(biāo)系和參數(shù)方程
分析:由題意將橢圓先化為一般方程坐標(biāo),然后再計算兩個焦點坐標(biāo)、兩條準(zhǔn)線的方程.
解答: 解:橢圓
x=3cosθ+1
y=4sinθ
(θ為參數(shù)),普通方程為
(x-1)2
9
+
y2
16
=1
,
焦點坐標(biāo)為(1,±
7
),兩條準(zhǔn)線的方程為x=1±
16
7
7

故答案為:(1,±
7
),x=1±
16
7
7
點評:此題考查橢圓的性質(zhì)和焦點坐標(biāo)、準(zhǔn)線的方程,還考查了參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會互相轉(zhuǎn)化,根據(jù)實際情況選擇不同的方程進行求解,這也是每年高考必考的熱點問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x-4,x≥0
x2,x<0
,則f(-2)=
 
,f[f(0)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(2)=1,且f(x)的導(dǎo)函數(shù)f′(x)>
2
3
,則關(guān)于x的不等式f(x)>
2x
3
-
1
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB切⊙O于A,D為⊙O內(nèi)一點,且OD=2,連結(jié)BD交⊙O于C,BC=CD=3,AB=6,則⊙O的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosB+bcosA=2ccosA,tanB=3tanC,則
AC
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(-3,6),且
a
b
,
b
c
,則(
a
+
b
c
=( 。
A、13B、15C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F是G的真子集,若對任意的x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”,已知函數(shù)f(x)=(
1
2
x(x≤0),若g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式為( 。
A、g(x)=(
1
2
|x|
B、g(x)=2|x|
C、g(x)=log2|x|
D、g(x)=log 
1
2
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD中,各個側(cè)面都是邊長為a的正三角形,E,F(xiàn)分別是SC和AB的中點,則直線EF與底面ABCD所成的角正切值為( 。
A、
5
5
B、
5
4
C、
6
3
D、
2
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=cosx(x∈[-
π
2
,
π
2
])的圖象與x軸所圍成的圖形中,直線l:x=t(t∈[-
π
2
,
π
2
])從點A向右平行移動至B,l在移動過程中掃過平面圖形(圖中陰影部分)的面積為S,則S關(guān)于t的函數(shù)S=f(t)的圖象可表示為(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案