,,平面⊥平面,是線段上一點(diǎn),,

(Ⅰ)證明:⊥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
(Ⅰ)詳見解析;(Ⅱ).

試題分析:(Ⅰ)由平面平面可得平面,從而.
接下來顯然考慮證明,這只需在平面中證明.
(Ⅱ)由于直線兩兩垂直,故可以軸,以軸,以軸建立空間直角坐標(biāo)系如圖所示 ,然后利用向量求直線與平面所成角的正弦值.
試題解析:(Ⅰ)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024229497504.png" style="vertical-align:middle;" />平面,平面平面,
平面,
平面.
平面,所以.

,
,即.
,所以平面.
(Ⅱ)由于直線兩兩垂直,故可以軸,以軸,以軸建立空間直角坐標(biāo)系如圖所示 ,

,
所以.
設(shè)平面的法向量為,
,解之得一個(gè)法向量.
設(shè)直線與平面所成角為
,所以直線與平面所成角的正弦值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐E—ABCD中,底面ABCD為邊長(zhǎng)為5的正方形,AE平面CDE,AE=3.

(1)若的中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1)若,求證:平面平面;
(2)點(diǎn)在線段上,,試確定的值,使平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,面,底面是直角梯形,側(cè)面是等腰直角三角形.且,,

(1)判斷的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段上一點(diǎn),當(dāng)//平面時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,為平行四邊形,且,的中點(diǎn),,

(Ⅰ)求證://;
(Ⅱ)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC = 1,BC = 2,AA1 = 4.

(Ⅰ)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1;
(Ⅱ)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的余弦值是,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,有下列四個(gè)命題:
①若m∥n,n?α,則m∥α;
②若m⊥n,m⊥α,nα,則n∥α;
③若α⊥β,m⊥α,n⊥β,則m⊥n;
④若m,n是異面直線,m?α,n?β,m∥β,則n∥α.
其中正確的命題有(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在下列條件下,可判斷平面與平面平行的是(     )
A.α、β都垂直于平面γ
B.α內(nèi)不共線的三個(gè)點(diǎn)到β的距離相等
C.l,m是α內(nèi)兩條直線且l∥β,m∥β
D.l,m是異面直線,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是兩條不同的直線,、是兩個(gè)不同的平面,則下面命題中正確的是(   )
A.
B.,
C.
D.,

查看答案和解析>>

同步練習(xí)冊(cè)答案