如圖所示,PC與圓O相切于點(diǎn)C,直線PO交圓O于A,B兩點(diǎn),弦CD垂直AB于E,則下面結(jié)論中,錯(cuò)誤的結(jié)論是( )
A.△BEC∽△DEA |
B.∠ACE=∠ACP |
C.DE2=OE·EP |
D.PC2=PA·AB |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
已知曲線,直線
(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,求點(diǎn)到直線的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
點(diǎn)P是△ABC所在平面內(nèi)的一點(diǎn),且滿足,則△PAC的面積與△ABC的面積之比為( 。
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
有一張矩形紙片ABCD,其中AD=8cm,上面有一個(gè)以AD為直徑的半圓,正好與對(duì)邊BC相切.如圖(甲).將它沿DE折疊,使A點(diǎn)落在BC上,如圖(乙),這時(shí),半圓還露在外面的部分(陰影部分)的面積是【 】
A.(π-)cm2 | B.( π-) |
C.(π+) | D.(π+) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在△ABC中,MN∥DE∥DC,若AE∶EC=7∶3,則DB∶AB的值為( )
A.3∶7 | B.7∶3 | C.3∶10 | D.7∶10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
Rt△ABC中,∠C=90°,CD⊥AB于D,若BD∶AD=3∶2,則△ACD與△CBD的相似比為( )
A.2∶3 | B.3∶2 | C.9∶4 | D.∶3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,PA、PB是⊙O的兩條切線,A、B為切點(diǎn),連接OP交AB于C,連接OA、OB,則圖中等腰三角形、直角三角形的個(gè)數(shù)分別為
A.1,2 B.2,2 C.2,6 D.1,6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com