設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,Sn)在函數(shù)f(x)=x2+x的圖象上.
(1)求an的表達式;
(2)設(shè)使得不等式
都成立?若存在,求出a的取值范圍;若不存在,請說明理由;
(3)將數(shù)列{an}依次按1項,2項循環(huán)地分為(a1),(a2,a3),(a4),(a7),(a8,a9),(a10),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b100的值;
(4)如果將數(shù)列{an}依次按1項,2項,3項,…,m(m≥3)項循環(huán);分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},提出同(3)類似的問題((3)應(yīng)當作為特例),并進行研究,你能得到什么樣的結(jié)論?
解:(1) 1分
故 要使不等式 10分 (3)數(shù)列{an}依次按1項,2項循環(huán)地分為(2),(4,6),(8),(10,12);(14),(16,18);(20),…,每一次循環(huán)記為一組.由于每一個循環(huán)含有2個括號,故b100是第50組中第2個括號內(nèi)各數(shù)之和. 由分組規(guī)律知, 的等差數(shù)列 13分 所以 14分 (4)當n是m的整數(shù)倍時,求bn的值. 數(shù)列{an}依次按1項、2項、3項,…,m項循環(huán)地分為(2),(4,6),(8,10,12),…, 第m組,第2m組,…,第組的第1個數(shù),第2個數(shù),…,第m個數(shù)分別組成一個等差數(shù)列,其首項分別為 16分 則第m組、第2m組,…,第km組,…的各數(shù)之和也組成一個等差數(shù)列,其公差為m2(m+1) 17分 第m組的m個數(shù)之和為 18分 當 21分 |
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
Sn |
5•2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com