已知函數(shù)的一系列對應(yīng)值如下表:
x
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求y=f(x)的解析式;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,,b=3c,求sinC.
【答案】分析:(1)通過最大值與最小值,求出M,B,通過函數(shù)的周期求出ω,利用函數(shù)的圖象最低點(diǎn)的坐標(biāo),求出φ,即可解出函數(shù)f(x)的解析式;
(2)先求出,再利用余弦定理,求出,利用正弦定理可得結(jié)論.
解答:解:(1)由題意,,∴
∵函數(shù)的周期為=2π,∴ω==1
∴f(x)=2sin(x-φ)+1
代入可得sin(--φ)=-1
∵|φ|<,∴φ=
…(4分)
(Ⅱ)∵,∴
,∴…(6分)
∵b=3c,由余弦定理得a2=b2+c2-2bccosA=8c2…(8分)

,∴
∴由正弦定理得,∴…(12分)
點(diǎn)評:本題考查學(xué)生的讀圖能力,考查函數(shù)解析式的確定,考查余弦、正弦定理的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年閔行區(qū)質(zhì)檢文)(14分)已知函數(shù)的一系列對應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;

(2)當(dāng)時,求方程的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的一系列對應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程恰有兩個不同的解,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市仲元中學(xué)高三數(shù)學(xué)專題訓(xùn)練:三角函數(shù)(解析版) 題型:解答題

已知函數(shù)的一系列對應(yīng)值如下表:
x
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)(文)當(dāng)x∈[0,2π]時,求方程f(x)=2B的解.
(3)(理)若對任意的實(shí)數(shù)a,函數(shù)y=f(kx)(k>0),的圖象與直線y=1有且僅有兩個不同的交點(diǎn),又當(dāng)時,方程f(kx)=m恰有兩個不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆安徽省高一上學(xué)期第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

已知函數(shù)的一系列對應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題

已知函數(shù)的一系列對應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案