分析 設(shè)A($\sqrt{2}$cosα,sinα),B=($\sqrt{2}$cosβ,sinβ),α,β∈[0,2π),則得到x1•y1+x2•y2=$\frac{\sqrt{2}}{2}$(sin2α+sin2β)=-$\sqrt{2}$,即sin2α+sin2β=-2,根據(jù)三角函數(shù)的性質(zhì),可得sin2α=sin2β=-1,即可求出α=$\frac{3π}{4}$,β=$\frac{7π}{4}$,即可求出答案.
解答 解:設(shè)A($\sqrt{2}$cosα,sinα),B=($\sqrt{2}$cosβ,sinβ),α,β∈[0,2π)
∴x1•y1+x2•y2=$\sqrt{2}$sinαcosα+$\sqrt{2}$sinβcosβ=$\frac{\sqrt{2}}{2}$(sin2α+sin2β)=-$\sqrt{2}$,
∴sin2α+sin2β=-2,
∵-1≤sin2α≤1,-1≤sin2β≤1,
∴sin2α=sin2β=-1,
∵點(diǎn)A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{2}$+y2=1兩個(gè)不同的動(dòng)點(diǎn),
∴不妨令α=$\frac{3π}{4}$,β=$\frac{7π}{4}$,
∴y12+y22=sin2α+sin2β=$\frac{1}{2}$+$\frac{1}{2}$=1,
故答案為:1
點(diǎn)評(píng) 本題考查了橢圓的參數(shù)方程,以及三角函數(shù)的有界性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-4y+20=0 | B. | 3x-4y+20=0或x=4 | C. | 4x-3y+8=0 | D. | 4x-3y+8=0或x=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{8}$ | B. | $\frac{9}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第一次考試 | 第二次考試 | 第三次考試 | 第四次考試 | |
數(shù)學(xué)總分 | 118 | 119 | 121 | 122 |
總分年級(jí)排名 | 133 | 127 | 121 | 119 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{{4\sqrt{5}}}{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com