分析 (1)根據(jù)題意中的比例中項,可得$\frac{EF}{FA}=\frac{FB}{FE}$,結(jié)合公共角可得△FAE∽△FEB,所以∠FEA=∠EBF,再由A,B,C,D四點共圓得到∠EDC=∠EBF,利用等量代換可得∠FEA=∠EDC,內(nèi)錯角相等,所以EF∥CD.
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì),可得∠ECD=∠EAB,∠EDC=∠B,從而△EDC∽△EBA,利用角平分線的性質(zhì),即可得出結(jié)論.
解答 證明:(1)∵EF2=FA•FB,
∴$\frac{EF}{FA}=\frac{FB}{FE}$,
又∵∠EFA=∠BFE,
∴△FAE∽△FEB,可得∠FEA=∠EBF,
又∵A,B,C,D四點共圓,
∴∠EDC=∠EBF,
∴∠FEA=∠EDC,
∴EF∥CD.
(2)∵A,B,C,D四點共圓,
∴∠ECD=∠EAB,∠EDC=∠B
∴△EDC∽△EBA,
∴$\frac{ED}{EB}$=$\frac{EC}{EA}$.
∵BD平分∠ABC,
∴$\frac{AB}{EB}$=$\frac{AD}{ED}$,
∴$\frac{ED}{EB}$=$\frac{AD}{AB}$,
∴$\frac{AD}{AB}$=$\frac{EC}{EA}$,
∴AE=2AB,
∴EC=2AD.
點評 本題在圓內(nèi)接四邊形的條件下,一方面證明兩條直線平行,另一方面求線段的比值.著重考查了圓中的比例線段、圓內(nèi)接四邊形的性質(zhì)和相似三角形的判定與性質(zhì)等知識點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4$\sqrt{2}$) | B. | (1,4) | C. | (-∞,4$\sqrt{2}$) | D. | ($\sqrt{2}$,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
暢銷日天數(shù) | 非暢銷日天數(shù) | 合計 | |
甲品牌 | 50 | 50 | 100 |
乙品牌 | 30 | 70 | 100 |
合計 | 80 | 120 | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com