11.如圖,A、B、C、D四點在同一圓上,BC與AD的延長線交于點E,點F在BA的延長線上.
(1)若EF2=FA•FB,證明:EF∥CD;
(2)若BD平分∠ABC,AE=2AB,求證:EC=2AD.

分析 (1)根據(jù)題意中的比例中項,可得$\frac{EF}{FA}=\frac{FB}{FE}$,結(jié)合公共角可得△FAE∽△FEB,所以∠FEA=∠EBF,再由A,B,C,D四點共圓得到∠EDC=∠EBF,利用等量代換可得∠FEA=∠EDC,內(nèi)錯角相等,所以EF∥CD.
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì),可得∠ECD=∠EAB,∠EDC=∠B,從而△EDC∽△EBA,利用角平分線的性質(zhì),即可得出結(jié)論.

解答 證明:(1)∵EF2=FA•FB,
∴$\frac{EF}{FA}=\frac{FB}{FE}$,
又∵∠EFA=∠BFE,
∴△FAE∽△FEB,可得∠FEA=∠EBF,
又∵A,B,C,D四點共圓,
∴∠EDC=∠EBF,
∴∠FEA=∠EDC,
∴EF∥CD.
(2)∵A,B,C,D四點共圓,
∴∠ECD=∠EAB,∠EDC=∠B
∴△EDC∽△EBA,
∴$\frac{ED}{EB}$=$\frac{EC}{EA}$.
∵BD平分∠ABC,
∴$\frac{AB}{EB}$=$\frac{AD}{ED}$,
∴$\frac{ED}{EB}$=$\frac{AD}{AB}$,
∴$\frac{AD}{AB}$=$\frac{EC}{EA}$,
∴AE=2AB,
∴EC=2AD.

點評 本題在圓內(nèi)接四邊形的條件下,一方面證明兩條直線平行,另一方面求線段的比值.著重考查了圓中的比例線段、圓內(nèi)接四邊形的性質(zhì)和相似三角形的判定與性質(zhì)等知識點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17. 如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,點E是SB的中點,∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD為等邊三角形.
(Ⅰ)求證:SD∥平面ACE;
(Ⅱ)求三棱錐S-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$的極大值點x0∈(-1,-$\frac{1}{2}$),則實數(shù)a的取值范圍為( 。
A.(0,4$\sqrt{2}$)B.(1,4)C.(-∞,4$\sqrt{2}$)D.($\sqrt{2}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+x2+x,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個零點x1,x2,x3,x4,且x1<x2<x3<x4,則ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商場對甲、乙兩種品牌的牛奶進(jìn)行為期100天的營銷活動,威調(diào)查這100天的日銷售情況,用簡單隨機抽樣抽取10天進(jìn)行統(tǒng)計,以它們的銷售數(shù)量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.已知該樣本中,甲品牌牛奶銷量的平均數(shù)為48件,乙品牌牛奶銷量的中位數(shù)為43件,將日銷量不低于50件的日期稱為“暢銷日”.
(Ⅰ)求出x,y的值;
(Ⅱ)以10天的銷量為樣本,估計100天的銷量,請完成這兩種品牌100天銷量的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為品牌與“暢銷日”天數(shù)相關(guān).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d為樣本容量)
P(K2≥k00.0500.0100.001
 k03.8416.63510.828
暢銷日天數(shù)非暢銷日天數(shù)合計
甲品牌5050100
乙品牌3070100
合計80120200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-a|,同時滿足f(-2)≤4和f(2)≤4.
(1)求實數(shù)a的值;
(2)記函數(shù)f(x)的最小值為M,若$\frac{1}{m}$+$\frac{2}{n}$=M(m,n∈R*),求m+2n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,∠ADC=60°,SA=1,AB=2,SB=$\sqrt{5}$,平面SAB⊥底面ABCD,直線SC與底面ABCD所成的角為30°
(1)證明:平面SAD⊥平面SAC;
(2)求二面角B-SC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,A,B的極坐標(biāo)分別為A(2,π),B(2,$\frac{π}{3}$).
(1)求直線AB的極坐標(biāo)方程;
(2)設(shè)M為曲線C上的點,求點M到直線AB距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案