分析 (1)分別利用f(-2)≤4和f(2)≤4求解絕對(duì)值的不等式得到a的范圍,取交集得答案;
(2)利用絕對(duì)值的不等式求得f(x)的最小值為M,得到$\frac{1}{m}$+$\frac{2}{n}$=2,再由基本不等式求得m+2n的最小值.
解答 解:(1)由f(2)=3+|a-2|≤4,得|a-2|≤1,即1≤a≤3.
由f(-2)=1+|a+2|≤4,得|a+2|≤3,即-5≤a≤1.
∵f(-2)≤4和f(2)≤4同時(shí)成立,
∴a=1;
(2)∵f(x)=|x+1|+|x-a|=|x+1|+|x-1|≥|(x+1)-(x-1)|=2,
當(dāng)且僅當(dāng)(x+1)(x-1)≤0,即-1≤x≤1時(shí)取等號(hào),∴M=2.
即$\frac{1}{m}$+$\frac{2}{n}$=2(m,n∈R*),
∴m+2n=$\frac{1}{2}(m+2n)(\frac{1}{m}+\frac{2}{n})=\frac{1}{2}(1+4+\frac{2n}{m}+\frac{2m}{n})$$≥\frac{1}{2}(5+2\sqrt{4})=\frac{9}{2}$.
當(dāng)且僅當(dāng)$\frac{2n}{m}=\frac{2m}{n}$且$\frac{1}{m}+\frac{2}{n}=2$,即m=n=$\frac{3}{2}$時(shí)取等號(hào).
∴m+2n的最小值為$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,訓(xùn)練了利用不等式求最小值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com