精英家教網(wǎng)已知雙曲線x2-y2=1的左、右頂點(diǎn)分別為A1、A2,動(dòng)直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點(diǎn)分別為P1(x1,y1),P2(x2,y2).
(Ⅰ)求k的取值范圍,并求x2-x1的最小值;
(Ⅱ)記直線m≤
x
lnx
的斜率為φ=
x
lnx
,直線m≤φ(x)min的斜率為φ′(x)=
lnx-1
ln2x
,那么,x∈(1,e)是定值嗎?證明你的結(jié)論.
分析:(Ⅰ)由l與圓相切,知m2=1+k2,由
y=kx+m
x2-y2=1
,得(1-k2)x2-2mkx-(m2+1)=0,故k的取值范圍為(-1,1).由此能求出x2-x1取最小值2
2

(Ⅱ)由已知可得A1,A2的坐標(biāo)分別為(-1,0),(1,0),所以k1k2=
y1y2
(x1+1)(x2-1)
=
(kx1+m)(kx2+m)
(x1+1)(x2-1)
=
k2-m2
m2-k2+2-2
2
,由此能求出k1k2=
-1
3-2
2
=-(3+2
2
)
為定值.
解答:解:(Ⅰ)∵l與圓相切,
1=
|m|
1+k2
,
∴m2=1+k2
y=kx+m
x2-y2=1

得(1-k2)x2-2mkx-(m2+1)=0,
1-k2≠0
△=4m2k2+4(1-k2)
x1x2=
m2+1
k2-1
<0
(m2+1)=4(m2+1-k2)=8>0

∴k2<1,
∴-1<k<1,
故k的取值范圍為(-1,1).
由于x1+x2=
2mk
1-k2
x2-x1=
(x1+x2)2-4x1x2
=
2
2
|1-k2|
=
2
2
1-k2

∵0≤k2<1
∴當(dāng)k2=0時(shí),x2-x1取最小值2
2
.(6分)
(Ⅱ)由已知可得A1,A2的坐標(biāo)分別為(-1,0),(1,0),
k1=
y1
x1+1
,k2=
y2
x2-1

k1k2=
y1y2
(x1+1)(x2-1)

=
(kx1+m)(kx2+m)
(x1+1)(x2-1)

=
k2x1x2+mk(x1+x2)+m2
x1x2+(x2-x1)-1

=
k2
m2+1
k2-1
-mk•
2mk
k2-1
+m2
m2+1
k2-1
-
2
2
k2-1
-1

=
m2k2+k2-2m2k2+m2k2-m2
m2+1-2
2
-k2+1

=
k2-m2
m2-k2+2-2
2

由①,得m2-k2=1,
k1k2=
-1
3-2
2
=-(3+2
2
)
為定值.(12分)
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案